Powers of Tau in Asynchrony

Sourav Das

Zhuolun Xiang

Ling Ren

souravd2@Illinois.edu

Problem Definitions

Challenger

Adversary \mathcal{A}

Challenger

1. Elliptic curve group \mathbb{G}

Challenger

Adversary \mathcal{A}

- 1. Elliptic curve group \mathbb{G}
- 2. Scalar field \mathbb{F}

Challenger

- 1. Elliptic curve group \mathbb{G}
- 2. Scalar field \mathbb{F}
- 3. Generator $G \in \mathbb{G}$

Adversary ${\mathcal A}$

Challenger

- 1. Elliptic curve group G
- 2. Scalar field \mathbb{F}

Challenger

3. Generator $G \in \mathbb{G}$

- 1. Elliptic curve group G
- 2. Scalar field \mathbb{F}

Challenger

3. Generator $G \in \mathbb{G}$

 $q \in \mathbb{N}$

2. Scalar field \mathbb{F}

Challenger

3. Generator $G \in \mathbb{G}$

Adversary wins: if $c + \tau \neq 0$ and $(\tau + c)^{-1} \cdot G$ is well formed

Adversary wins: if $c + \tau \neq 0$ and $(\tau + c)^{-1} \cdot G$ is well formed

q-SDH assumptions says adversary wins with negligible probability

q-SDH parameters (aka Powers of Tau)

Adversary wins: if $c + \tau \neq 0$ and $(\tau + c)^{-1} \cdot G$ is well formed

q-SDH assumptions says adversary wins with negligible probability

• Short signatures

- Short signatures
- Cryptographic Accumulators

- Short signatures
- Cryptographic Accumulators
- Vector commitments

- Short signatures
- Cryptographic Accumulators
- Vector commitments
- Constant size polynomial commitments

- Short signatures
- Cryptographic Accumulators
- Vector commitments
- Constant size polynomial commitments
 - SNARKs

- Short signatures
- Cryptographic Accumulators
- Vector commitments
- Constant size polynomial commitments
 - SNARKs
 - Verifiable Secret Sharing

- Short signatures
- Cryptographic Accumulators
- Vector commitments
- Constant size polynomial commitments
 - SNARKs
 - Verifiable Secret Sharing
 - Randomness Beacon

MPC protocol to generate of Powers of Tau in an asynchronous network

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:

• $n \ge 3t + 1$ nodes among which up to t are corrupt

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:

- $n \ge 3t + 1$ nodes among which up to t are corrupt
- Asynchronous network:
 - Message delays could be arbitrary

Related Works

- MPC over both field ${\mathbb F}$ and group ${\mathbb G}$

- MPC over both field $\mathbb F$ and group $\mathbb G$

- MPC over both field ${\mathbb F}$ and group ${\mathbb G}$

- MPC over both field ${\mathbb F}$ and group ${\mathbb G}$

- MPC over both field ${\mathbb F}$ and group ${\mathbb G}$

Multiplication units are expensive, per party $\Omega(nq)$ communication costs

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$au_1$$
G, au_1^2 G, ..., au_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$
- Compute G, τ_1 G, τ_1^2 G, ..., τ_1^q G - Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$
- Compute G, τ_1 G, τ_1^2 G, ..., τ_1^q G - Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$

G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

$$\mathsf{G}, \tau_1 \mathsf{G}, \tau_1^2 \mathsf{G}, \dots, \tau_1^q \mathsf{G}$$

- Sample $\tau_1 \leftarrow \mathbb{F}$
- Compute G, τ_1 G, τ_1^2 G, ..., τ_1^q G - Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G
- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;
- Compute $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$
- Broadcast $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$

G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Sample $\tau_1 \leftarrow \mathbb{F}$
- Compute G, τ_1 G, τ_1^2 G, ..., τ_1^q G - Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G
- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;
- Compute $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$
- Broadcast G_0 , $\tau_2 G_1$, $\tau_2^2 G_2$, ..., $\tau_2^q G_q$

G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
G₀, τ_2 G₁, τ_2^2 G₂, ..., τ_2^q G_q

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast
$$G_0$$
, $\tau_2 G_1$, $\tau_2^2 G_2$, ..., $\tau_2^q G_q$

•

$$G_{1}\tau_{1}G_{1}\tau_{1}^{2}G_{2}\dots,\tau_{1}^{q}G_{1}$$

$$G_{0},\tau_{2}G_{1},\tau_{2}^{2}G_{2},\dots,\tau_{2}^{q}G_{q}$$

$$\vdots$$

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast
$$G_0$$
, $au_2 G_1$, $au_2^2 G_2$, ..., $au_2^q G_q$

•

G, τ_1 G, τ_1^2 G, ..., τ_1^q G G₀, τ_2 G₁, τ_2^2 G₂, ..., τ_2^q G_q :

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast
$$G_0$$
, $\tau_2 G_1$, $\tau_2^2 G_2$, ..., $\tau_2^q G_q$

•

G, τ_1 G, τ_1^2 G, ..., τ_1^q G G₀, τ_2 G₁, τ_2^2 G₂, ..., τ_2^q G_q :

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

 $G_{1}\tau_{1}G_{1}\tau_{1}^{2}G_{2}\dots,\tau_{1}^{q}G_{1}$ $G_{0},\tau_{2}G_{1},\tau_{2}^{2}G_{2},\dots,\tau_{2}^{q}G_{q}$:

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$

$$G_{1}\tau_{1}G_{1}\tau_{1}^{2}G_{2}\dots,\tau_{1}^{q}G_{1}$$

$$G_{0},\tau_{2}G_{1},\tau_{2}^{2}G_{2},\dots,\tau_{2}^{q}G_{q}$$

$$\vdots$$

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori+ Only one honest party is needed

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$

$$G, \tau_{1}G, \tau_{1}^{2}G, \dots, \tau_{1}^{q}G$$
$$G_{0}, \tau_{2}G_{1}, \tau_{2}^{2}G_{2}, \dots, \tau_{2}^{q}G_{q}$$
$$\vdots$$

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori+ Only one honest party is needed

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$

$$G_{1}, \tau_{1}G_{1}, \tau_{1}^{2}G_{2}, \dots, \tau_{1}^{q}G_{q}$$
$$G_{0}, \tau_{2}G_{1}, \tau_{2}^{2}G_{2}, \dots, \tau_{2}^{q}G_{q}$$
$$\vdots$$

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori+ Only one honest party is needed

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

$$G, \tau_{1}G, \tau_{1}^{2}G, \dots, \tau_{1}^{q}G$$
$$G_{0}, \tau_{2}G_{1}, \tau_{2}^{2}G_{2}, \dots, \tau_{2}^{q}G_{q}$$
$$\vdots$$

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori+ Only one honest party is needed

- Require $\Omega(n)$ sequential broadcasts

- Sample $\tau_1 \leftarrow \mathbb{F}$

- Compute G,
$$\tau_1$$
G, τ_1^2 G, ..., τ_1^q G
- Post G, τ_1 G, τ_1^2 G, ..., τ_1^q G

- Download $G_0, G_1, G_2, \dots, G_q$ - Sample $\tau_2 \leftarrow \mathbb{F}$;

- Compute
$$G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$$

- Broadcast $G_0, \tau_2 G_1, \tau_2^2 G_2, \dots, \tau_2^q G_q$

$$G, \tau_{1}G, \tau_{1}^{2}G, \dots, \tau_{1}^{q}G$$
$$G_{0}, \tau_{2}G_{1}, \tau_{2}^{2}G_{2}, \dots, \tau_{2}^{q}G_{q}$$
$$\vdots$$

Final output: G,
$$(\tau_1 \tau_2 \cdots \tau_n)$$
G, $(\tau_1 \tau_2 \cdots \tau_n)^2$ G, $\cdots (\tau_1 \tau_2 \cdots \tau_n)^q$ G

+ Parties need not be fixed a priori+ Only one honest party is needed

- Require $\Omega(n)$ sequential broadcasts - Does not work in asynchrony

Our Approach

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Specialized asynchronous MPC for generating Powers of Tau

Three phases:

Specialized asynchronous MPC for generating Powers of Tau

Three phases:

Specialized asynchronous MPC for generating Powers of Tau

Three phases:

Only $O(\log q)$ multiplication units are needed

Specialized asynchronous MPC for generating Powers of Tau

Three phases:

Only $O(\log q)$ multiplication units are needed

All parts can be implemented with expected $O(\log q + \log n)$ rounds

$\overrightarrow{F} A synchronous$ $DKG \rightarrow [\tau], [\tau]G where [\tau]G = [\tau]_1G, [\tau]_2G, ... [\tau]_nG$ $[\tau]G are also called as threshold public keys$

• We use the Asynchronous DKG protocol from [DXKR'23]

- We use the Asynchronous DKG protocol from [DXKR'23]
 - $O(n^2)$ per-party communication cost

- We use the Asynchronous DKG protocol from [DXKR'23]
 - $O(n^2)$ per-party communication cost
 - O(log *n*) expected rounds

$$[\tau], [\tau]G \longrightarrow \begin{array}{c} Squaring \\ Protocol \end{array}$$

$$[\tau], [\tau]G \longrightarrow \begin{array}{c} \mathsf{Squaring} \\ \mathsf{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \hline \end{array}$$

$$[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \xrightarrow{} \begin{bmatrix} \tau^2 \end{bmatrix}, [\tau^2]G \\ \longrightarrow \begin{bmatrix} \tau^4 \end{bmatrix}, [\tau^4]G \\ \end{bmatrix}$$

$$[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \longrightarrow & [\tau^4], [\tau^4]G \\ \vdots \\ \longrightarrow & [\tau^q], [\tau^q]G \end{array}$$

Double sharing-based MPC multiplication

Double sharing-based MPC multiplication

• Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau],[a]^{2t})$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \longrightarrow & [\tau^4], [\tau^4]G \\ \vdots \\ \longrightarrow & [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \rightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t})$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \longrightarrow & [\tau^4], [\tau^4]G \\ \vdots \\ \longrightarrow & [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \rightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \rightarrow Z$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \longrightarrow & [\tau^4], [\tau^4]G \\ \vdots \\ \longrightarrow & [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \rightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \rightarrow z$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \longrightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \longrightarrow Z$

Compute
$$[\tau^2]_i \coloneqq z - [a]_i^t$$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow \\ [\tau^2], [\tau^2]G \\ \longrightarrow \\ [\tau^4], [\tau^4]G \\ \longrightarrow \\ [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \longrightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \longrightarrow Z$

Compute $[\tau^2]_i \coloneqq z - [a]_i^t$ Compute $[\tau^2]_G \coloneqq (z - [a]^t) \cdot G$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow & [\tau^2], [\tau^2]G \\ \longrightarrow & [\tau^4], [\tau^4]G \\ \vdots \\ & & [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

 $([\tau], [a]^{2t}) \longrightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \longrightarrow Z$

Compute $[\tau^2]_i \coloneqq z - [a]_i^t$ Compute $[\tau^2]_G \coloneqq (z - [a]^t) \cdot G$

Double sharing generation from [DXKR'23]

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \begin{array}{c} \longrightarrow \\ [\tau^2], [\tau^2]G \\ \longrightarrow \\ [\tau^4], [\tau^4]G \\ \longrightarrow \\ [\tau^q], [\tau^q]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

$$([\tau], [a]^{2t}) \longrightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \longrightarrow Z$$

Compute
$$[\tau^2]_i \coloneqq z - [a]_i^t$$

Compute $[\tau^2]_G \coloneqq (z - [a]^t) \cdot G$

Double sharing generation from [DXKR'23]

• Per party per unit communication cost of $O(n^2)$

 $[\tau], [\tau]G \longrightarrow \begin{array}{c} \text{Squaring} \\ \text{Protocol} \end{array} \xrightarrow[\tau^{2}], [\tau^{2}]G \\ \hline \\ \vdots \\ [\tau^{4}], [\tau^{4}]G \\ \hline \\ \hline \\ \end{array} \xrightarrow[\tau^{q}], [\tau^{q}]G \end{array}$

Double sharing-based MPC multiplication

- Let $[a]^t$ and $[a]^{2t}$ be degree t and 2t sharing of a $a \leftarrow \mathbb{F}$
- Let $[a]^t G$ and $[a]^{2t} G$ be threshold public keys

$$([\tau], [a]^{2t}) \longrightarrow \operatorname{Reveal}([\tau][\tau] + [a]^{2t}) \longrightarrow Z$$

Compute $[\tau^2]_i \coloneqq z - [a]_i^t$ Compute $[\tau^2]_G \coloneqq (z - [a]^t) \cdot G$

Double sharing generation from [DXKR'23]

- Per party per unit communication cost of $O(n^2)$
- Per party total communication cost of $O(n^2 \log q)$

Example: τ^5 G

Example: $\tau^5 G = (\tau^{2 \cdot 2} \tau) G$

Example: $\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

Protocol:

1. Each node *i* publishes $[\tau^2]_i(\tau^2 G)$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

- 1. Each node *i* publishes $[\tau^2]_i(\tau^2 G)$
- 2. Interpolate $[\tau^2]_i(\tau^2 G)$ in the exponent to compute $\tau^2(\tau^2 G)$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

1. Each node *i* publishes
$$[\tau^2]_i(\tau^2 G)$$

- 2. Interpolate $[\tau^2]_i(\tau^2 G)$ in the exponent to compute $\tau^2(\tau^2 G)$
- 3. Compute $\tau^2(\tau^2 G) \cdot (\tau G) = \tau^5 G$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

1. Each node *i* publishes
$$[\tau^2]_i(\tau^2 G)$$

- 2. Interpolate $[\tau^2]_i(\tau^2 G)$ in the exponent to compute $\tau^2(\tau^2 G)$
- 3. Compute $\tau^2(\tau^2 G) \cdot (\tau G) = \tau^5 G$

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

1. Each node *i* publishes
$$[\tau^2]_i(\tau^2 G)$$

- 2. Interpolate $[\tau^2]_i(\tau^2 G)$ in the exponent to compute $\tau^2(\tau^2 G)$
- 3. Compute $\tau^2(\tau^2 G) \cdot (\tau G) = \tau^5 G$
- Naively O(n) per-party communication per exponent

Example:
$$\tau^5 G = (\tau^{2 \cdot 2} \tau) G = \tau^2 (\tau^2 G) \cdot (\tau G)$$

1. Each node *i* publishes
$$[\tau^2]_i(\tau^2 G)$$

- 2. Interpolate $[\tau^2]_i(\tau^2 G)$ in the exponent to compute $\tau^2(\tau^2 G)$
- 3. Compute $\tau^2(\tau^2 G) \cdot (\tau G) = \tau^5 G$
- Naively O(n) per-party communication per exponent
- Batch amortization optimization to get O(1) per-party communication cost

Total per party communication cost: $O(q + n^2 \log q)$

Expected rounds: $O(\log n + \log q)$. Can me made $O(\log q)$

Implementation and Evaluation

• Implemented in python with rust for cryptography

- Implemented in python with rust for cryptography
- Available at https://github.com/sourav1547/qsdh-py

- Implemented in python with rust for cryptography
- Available at https://github.com/sourav1547/qsdh-py
- Evaluation with up to 128 AWS nodes

- Implemented in python with rust for cryptography
- Available at https://github.com/sourav1547/qsdh-py
- Evaluation with up to 128 AWS nodes
- Round-robin protocol as baseline

- Implemented in python with rust for cryptography
- Available at https://github.com/sourav1547/qsdh-py
- Evaluation with up to 128 AWS nodes
- Round-robin protocol as baseline
 - n|M| as bandwidth usage of broadcast

- Implemented in python with rust for cryptography
- Available at https://github.com/sourav1547/qsdh-py
- Evaluation with up to 128 AWS nodes
- Round-robin protocol as baseline
 - n|M| as bandwidth usage of broadcast
 - Computation cost of broadcast is free

→
$$q = 2^{14}$$
 → $q = 2^{16}$, This work.
- ▲ $q = 2^{14}$ - Θ - $q = 2^{16}$, Baseline.

Number of parties

$$\begin{array}{|c|c|c|c|c|c|c|} \hline \bullet & q = 2^{14} - \bullet & q = 2^{16}, \text{ This work.} \\ \hline \bullet & q = 2^{14} - \bullet & q = 2^{16}, \text{ Baseline.} \end{array}$$

For example, with $q = 2^{16}$, Ours: 1037 seconds, Baseline: 3580 seconds (3.4×)

→
$$q = 2^{14}$$
 → $q = 2^{16}$, This work.
- △ $q = 2^{14}$ - Θ - $q = 2^{16}$, Baseline.

$$\begin{array}{|c|c|c|c|c|c|c|} \hline & \bullet & q = 2^{14} & \bullet & q = 2^{16}, \text{ This work.} \\ \hline & \bullet & q = 2^{14} & \bullet & \bullet & q = 2^{16}, \text{ Baseline.} \end{array}$$

$$- - q = 2^{14} - - q = 2^{16},$$
 This work.
- $- - q = 2^{14} - - q = 2^{16},$ Baseline.

For example, with $q = 2^{16}$, Ours: 13.57 MBytes, Baseline: 96 MBytes (7×)

Summary

Summary

Asynchronous protocol for generating Powers of Tau
Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

See paper for:

• Batch amortization optimization

Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

- Batch amortization optimization
- Running DKG and multiplication unit generation protocol in parallel

Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

- Batch amortization optimization
- Running DKG and multiplication unit generation protocol in parallel
- Evaluation breakdown of each phases

Asynchronous protocol for generating Powers of Tau

Communication	Computation	Expected Number	Cryptography
Cost (per party)	Cost (per party)	of Rounds	Assumption
$O(q + n^2 \log q)$	$O(q \log n \mathbb{G} + n \log q \mathbb{P})$	$O(\log q) + ADKG$	q-SDH + ADKG

- Batch amortization optimization
- Running DKG and multiplication unit generation protocol in parallel
- Evaluation breakdown of each phases