Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng, Nikita Yadav, Vishal Sevani, Arun Babu, SVR Anand, Himanshu Tyagi and Pramod Viswanath

Presented by

Internet Society

#NDSSSymposium2024

Open Networking

- 1990s: Heterogeneous networks linking computers
 - TCP/IP: decentralized routing and congestion control
 - Web 1.0
- 2010: Giant content delivery networks
 - Centralized data centers, cloud computing, caching
 - Web 2.0

Tail Winds of Decentralization: Private 5G

Components to setup private 5G networks are ready!

Blockchains: Stitching Together

- Low friction way to stitch things together
 - Open and trustless
- Tokenization of incentives

Network Telemetry

- Centralized Telemetry
 - Monitor and optimize network performance
- Decentralized Telemetry
 - Open: no powerful servers (any device)
 - Trustfree: no trusted parties (Byzantine resistance)
 - Network meritocracy: incentive compatibility

A cryptographic proof system establishing that each party is contributing appropriately towards enabling backhaul bandwidth

Centralized Measurements

Speedtest: speedtest.net

- Nearby powerful servers (high bandwidth, low latency, low packet loss)
- A dedicated foreground service to flood the connection

Centralized Measurements

Speedtest: speedtest.net

- Not open: High barrier to entry to be a challenge server
- Not trustfree: Need to trust the challenge server for sending data and the prover for timing measurements

Traffic Aggregation

- Multiple challengers send packets simultaneously
- Packets arrive at the network core around the same time
- Aggregated to an equivalent powerful challenger

Open but not trustfree

For high-bandwidth provers (>100Mbps), needs a very low

jitter path between the challenger and the prover

Interactive Measurement

Combining Aggregation and Interactivity

- Aggregate traffic from multiple challengers
- Prover sends a timing signal upon receiving all the packets

- Withholding: corrupted challengers can refuse to send the packets
- Rushing: corrupted prover can collude with a subset of challengers to get packets from an external channel

Trustfree Proof of Backhaul

- Open: Use Traffic Aggregation
- Trustfree: A Byzantine Fault Tolerant (BFT) interactive measurement scheme

Formal Security Properties

- Soundness: no prover can inflate the bandwidth
- Approximate Completeness: if the prover is not corrupted, the protocol will output a bandwidth $\theta'_P \ge \alpha \theta_P$
- Accuracy rate

$$\alpha = \frac{n - 2f}{n - f}$$

where n is the number of challengers, f is the number of Byzantine faults

Protocol Primitives

- Unforgeable packets
 - Digital signatures
- Robust timing measurement
 - Median is bounded by honest reports
- Short witness
 - Hash and Merkle tree

Multichallenger PoB Protocol

- 1. Verifiable traffic aggregation: Multiple challengers send unforgeable traffic
- 2. Short packet receipts: Prover commits received packets using Merkle root
- 3. Local Verification: Challengers verify that their respective challenge traffic was received
- 4. Robustification: Take median of the RTT measurements

Design Scope Exploration

- Packets: UDP / TCP
- Crypto primitive: with / without signature
- Threat model: with / without access to extra link

	Packets	Crypto primivite	Rushing attack	Accuracy
РоВ	UDP	signature	Yes	$(1-2\beta)/(1-\beta)$
PoB-TCP	ТСР	signature	Yes	1-eta
PoB-PRG	UDP	pseudorandom generator	Yes	(1-3eta)/(1-eta)
PoB-shuffle	UDP	signature	No	$1 - \tfrac{(1+\delta_b)\beta^t}{(1-\delta_g)(1-\beta)^t} ^{\text{\tiny (1)}}$
⁽¹⁾ $0 < \delta_b, \delta_q \leq 1$				

TABLE II: Comparison of different protocols in design landscape

System View

- Practical factors: network jitter, synchronization error, computation overhead
- Lightweight: small amount of challenge data
- Open: geographically spread challengers with low bandwidth
- Secure under attacks

Technique			cure Challenger	Challenger BW < Backhaul BW			
Pathchar [22], [29], [40]			X	✓			
Packet dispersion based [17], [18], [38], [50]			X	×			
Secure BW estimation [33], [53], [59]			1	×			
Multichallenger PoB			✓	1			
(a)							
Backhaul BW	Challenger BW	Challenge Da	ita Attack	Measured BW	Guaranteed BW		
(Mbps)	(Mbps)	(MB)		(Error %)	(Mbps)		
250	25	3.44	-	246 (1.6%)	184		
500	20	6.86	-	475 (5%)	356		
750	75	10.31	-	705 (6%)	529		
1000	100	13.75	-	921 (8%)	691		
250	32	3.44	Rushing	331 (0.6%)	249		
250	32	3.44	Withholding	241 (3.6%)	181		

Thanks!

Full paper: <u>https://arxiv.org/abs/2210.11546</u> Github: <u>https://github.com/multichallengerpob/proof-of-backhaul</u> Email: <u>peiyaosheng@gmail.com</u>

#NDSSSymposium2024