

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss 27.02.2024

Where can we find security issues?

CCT: CONTROL-HOW CHTOLCEMENT TECHNOlogy	nger Lake, Sapphile Rapius, Sierra Porest, uranu Riuge		
AVX512_VP2INTERSECT	Tiger Lake (not currently supported in any other processors)		
Enqueue Stores: ENQCMD and ENQCMDS	Sapphire Rapids, Sierra Forest, Grand Ridge		
CLDEMOTE	Tremont, Sapphire Rapids		
PTWRITE	Goldmont Plus, Alder Lake, Sapphire Rapids		
User Wait: TPAUSE, UMONITOR, UMWAIT	Tremont, Alder Lake, Sapphire Rapids		
Architectural LBRs	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
HLAT	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
SERIALIZE	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
Intel [®] TSX Suspend Load Address Tracking (TSXLDTRK)	Sapphire Rapids		

CCT: CONTROL-HOW CHTOLCEMENT TECHNOlogy	пует саке, заррние кариз, этена потезт, чтани кийуе		
AVX512_VP2INTERSECT	Tiger Lake (not currently supported in any other processors)		
Enqueue Stores: ENQCMD and ENQCMDS	Sapphire Rapids, Sierra Forest, Grand Ridge		
CLDEMOTE	Tremont, Sapphire Rapids		
PTWRITE	Goldmont Plus, Alder Lake, Sapphire Rapids		
User Wait: TPAUSE, UMONITOR, UMWAIT	Tremont, Alder Lake, Sapphire Rapids		
Architectural LBRs	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
HLAT	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
SERIALIZE	Alder Lake, Sapphire Rapids, Sierra Forest, Grand Ridge		
Intel [®] TSX Suspend Load Address Tracking (TSXLDTRK)	Sapphire Rapids		

Description

TPAUSE instructs the processor to enter an implementation-dependent optimized state. There are two such optimized states to choose from: light-weight power/performance optimized state, and improved power/performance optimized state. The selection between the two is governed by the explicit input register bit[0] source operand.

State Name	Wakeup Time	Power Savings	Other Benefits	
C0.2	Slower	Larger	Improves performance of the other SMT thread(s) on the same core.	
CO.1	Faster	Smaller	N/A	
N/A	N/A	N/A	Reserved	

Performance increase in the Phoronix Test Suite and SPEC CPU 2017 on a logical core while the sibling logical core is in the C0.2 idle state.

www.tugraz.at

Performance increase of a set of x86 instructions on an Intel i7-1260P, when the sibling logical core is in idle state C0.2 compared to a busy wait.

Covert Channel

	<u> </u>		
Core			
Sender Thread			
busy wait	C0.2	C0.2	busy wait
			>
Receiver Thread			
AP3	5°%	50%3	899
			>
K t →	<>	K t →	K t ≻

• Native: 7.1 Mbit/s ($\sigma_{\bar{x}} = 0.004 \text{ Mbit/s}, n = 512$)

- Native: 7.1 Mbit/s ($\sigma_{\overline{x}} = 0.004$ Mbit/s, n = 512)
- Cross-VM: 46.3 kbit/s ($\sigma_{\bar{x}} = 0.15$ kbit/s, n = 370)

The instruction execution wakes up when the time-stamp counter reaches or exceeds the implicit EDX:EAX 64-bit input value.

Other implementation-dependent events may cause the processor to exit the implementation-dependent optimized state proceeding to the instruction following TPAUSE. In addition, an external interrupt causes the processor to exit the implementation-dependent optimized state regardless of whether maskable-interrupts are inhibited (EFLAGS.IF =0). It should be noted that if maskable-interrupts are inhibited execution will proceed to the instruction following TPAUSE. Other implementation-dependent events may cause the processor to exit the implementation-dependent optimized state proceeding to the instruction following TPAUSE. In addition, an external interrupt causes the processor to exit the implementation-dependent optimized state regardless of whether maskable-interrupts are inhibited (EFLAGS.IF =0). It should be noted that if maskable-interrupts are inhibited execution will proceed to the instruction following TPAUSE.

Documented Behaviour

Documented Behaviour

Undocumented Behaviour 1

Undocumented Behaviour 1

Undocumented Behaviour 2 (C0.1)

Undocumented Behaviour 2 (C0.1)

Undocumented Behaviour 3 (C0.1)

Undocumented Behaviour 4 (C0.1)

Undocumented Behaviour 4 (C0.1)

Undocumented Behaviour 4 (C0.1)

• Sender and Receiver each on a logical core

- Sender and Receiver each on a logical core
- Sender triggers exceptions or busy waits

- Sender and Receiver each on a logical core
- Sender triggers exceptions or busy waits
- Receiver measures interrupt frequency with C0.1

- Sender and Receiver each on a logical core
- Sender triggers exceptions or busy waits
- Receiver measures interrupt frequency with C0.1
- ightarrow 656.37 kbit/s ($\sigma_{ar{x}}=$ 0.63 kbit/s, $\mathit{n}=$ 1 024)

$\sim \sim$

$\sim \sim$

Fingerprinting Processing

Fingerprinting Processing

Fingerprinting Processing

• Top 100 Websites

- Top 100 Websites
- Closed World:

- Top 100 Websites
- Closed World:
 - same logical core as interrupts

- Top 100 Websites
- Closed World:
 - same logical core as interrupts
 - sibling logical core of the interrupt core

- Top 100 Websites
- Closed World:
 - same logical core as interrupts
 - sibling logical core of the interrupt core
- Open World:

- Top 100 Websites
- Closed World:
 - same logical core as interrupts
 - sibling logical core of the interrupt core
- Open World:
 - additional other-class

Website Fingerprinting

The confusion matrix for our open-world website-fingerprinting attack, with network interrupts arriving on a sibling logical core. F1-score of 85.2 % (87.4 % on other).

What else can we fingerprint?

No. Inc.

Video Platform 1

Video Platform 2

• 20 popular videos on each platform

- 20 popular videos on each platform
- Closed World:

- 20 popular videos on each platform
- Closed World:
 - sibling logical core of the interrupt core

- 20 popular videos on each platform
- Closed World:
 - sibling logical core of the interrupt core
- Open World:

- 20 popular videos on each platform
- Closed World:
 - sibling logical core of the interrupt core
- Open World:
 - additional other-class

Open-World Video Fingerprinting

Video platform 1: F1-score of 81.5 %
(83 % on the other-class)

20

16

Open-World Video Fingerprinting

Video platform 1: F1-score of 81.5% (83% on the other-class)

Video platform 2: F1-score of 70.5% (82% on the other-class)

Summary

Fabian Rauscher

Summary

We

Fabian Rauscher

Summary

We

... analyzed security properties of C0.1 and C0.2

- \dots analyzed security properties of C0.1 and C0.2
- ... built a high-speed covert channel (7.1 Mbit/s)

- \ldots analyzed security properties of C0.1 and C0.2
- ... built a high-speed covert channel (7.1 Mbit/s)
- ... performed website fingerprinting (F_1 score of 85.2%)

- \ldots analyzed security properties of C0.1 and C0.2
- ... built a high-speed covert channel (7.1 Mbit/s)
- ... performed website fingerprinting (F_1 score of 85.2%)
- ... performed a video fingerprinting attack

- \ldots analyzed security properties of C0.1 and C0.2
- ... built a high-speed covert channel (7.1 Mbit/s)
- ... performed website fingerprinting (F_1 score of 85.2%)
- ... performed a video fingerprinting attack
- ... showed an inter-keystroke timing attack (F_1 score of 90.5 %)

Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss. "IdleLeak: Exploiting Idle State Side Effects for Information Leakage". In: NDSS. 2024