Understanding the Implementation and Security Implications of Protective DNS Services

Mingxuan Liu*, Yiming Zhang*, Xiang Li, Chaoyi Lu,

Baojun Liu, Haixin Duan, Xiaofeng Zheng

These two authors are both first authors.

Widespread Abuse of the Domain Name System

Your journey on the Internet often starts by sending DNS requests

Attackers also widely abuse DNS (use malicious domains) for cyber attacks

Over 91% of malware uses DNS to carry out attacks*

Widespread Abuse of the Domain Name System

Your journey on the Internet often starts by sending DNS requests

Attackers also widely abuse DNS (use malicious domains) for cyber attacks

Over 91% of malware uses DNS to carry out attacks*

DNS-based blocking mechanisms are effective in curbing cyber attacks!

* https://umbrella.cisco.com/blog/dns-security-your-new-secret-weapon-in-your-fight-against-cybercrime

What is Protective DNS (PDNS)

 Protective DNS (PDNS) can proactively intercept and block malicious activities during the domain resolution process

PDNS is a thriving security service

Gained support from dozens of large DNS services

PDNS is a thriving security service

Gained support from dozens of large DNS services

Promoted to establish National PDNS infrastructure

An ornicial website of the United States government	reres now you know V			
CYBERSECURITY & INFRASTRUCTURE SECURITY AGENCY	AMERICA'S CYBER DEFENSE AGENCY			
Topics 🛩 Spotlight Resources & Tools	✓ News & Events ✓ Careers ✓ About ✓			
Home / Resources & Tools / Services				
SERVICE				
Destaution Dest		- I		
Protective Dom	iain Name System Res	olver		
	Deadinees Levels Fernalet	and Intermediate Advanced		
	Readiness Level: Foundat	onal, intermediate, Advanced		
USA	CYBER THREATS AND ADVISORIES, SECURING NETWORKS			

Research Gap: High opacity and diversity hinder the understanding of PDNS

Research Gap: High opacity and diversity hinder the understanding of PDNS

How many DNS servers in the wild are offering PDNS services?

Research Gap: High opacity and diversity hinder the understanding of PDNS

How many DNS servers in the wild are offering PDNS services?

What are the **blocking policies** of PDNS?

Research Gap: High opacity and diversity hinder the understanding of PDNS

Our Work

Identifying PDNS Methodology

- Distinguishing modification of PDNS
- Identified 17,601 open PDNS servers in the wild

Understanding of PDNS Ecosystem

- First active measurement study for PDNS
- Blocklist and rewriting policy

Security analysis of PDNS infrastructure

- First discover 3 types of security flaws
- Denial of Response (DoR)
- Dangling PDNS Infrastructure
- Subversion of Protective Features

<u></u>	1	İ
H	Í I	

Empirical Study of 28 Public PDNS

Empirical Study of the domain blocklist and DNS rewriting policies of 28 public-claimed PDNSes

Empirical Study of 28 Public PDNS

Empirical Study of the domain blocklist and DNS rewriting policies of 28 public-claimed PDNSes

Resolution path of:

- Blacklisted domains
- Other domains
- PDNS-specific function
 - Normal DNS function

Domain Blocklist

- > Open-source domain blocklist: <u>7 PDNS</u> providers
- > Private domain blocklist: <u>11 PDNS</u> providers
- **Unknown source**: <u>16 PDNS</u> providers \succ
- > User complaints and corrections: <u>2 PDNS</u> providers

Empirical Study of 28 Public PDNS

Empirical Study of the domain blocklist and DNS rewriting policies of 28 public-claimed PDNSes Domain Blocklist

Resolution path of:

- --→ Blacklisted domains
- Other domains
- PDNS-specific function
 - Normal DNS function

- > **Open-source domain blocklist**: <u>7 PDNS</u> providers
- > Private domain blocklist: <u>11 PDNS</u> providers
- > Unknown source: <u>16 PDNS</u> providers
- > User complaints and corrections: <u>2 PDNS</u> providers

Rewriting Policy

- > Special-use IP addresses: <u>4 PDNS</u> providers, e.g., 0.0.0.0
- > Secure IP addresses: <u>14 PDNS</u> providers
- > Secure CNAMEs: <u>4 PDNS</u> providers
- > **Response code**: <u>2 PDNS</u> providers
- > **No data**: 6 PDNS providers

Identification Methodology for PDNS in the wild

- 3-step identification methodology for PDNS
 - Step I: Collecting Domain Names
 - Step II: Querying Open DNS Servers
 - Step III: Identifying PDNS

Identification Methodology for PDNS in the wild

Step I - Collecting domain names: compile a list of 10,000 "generallymalicious" domain names from 7 public blocklists, and 100 popular domains

Category	# Domains	WHOIS status	#	Domains			
Malware Botnet Phishing Adult Spam Tracker	4,231 3,962 867 667 259 14	Not resolvable serverHold/clientHold inactive Resolvable		2,252 128 2,124 7,748			
10,000 Malicious Domain Names							

Tranco

100 Popular Domains

Identification Methodology for PDNS in the wild

Step I - Collecting domain names: compile a list of 10,000 "generallymalicious" domain names from 7 public blocklists, and 100 popular domains

\bigcap	
	$\mathbf{\Sigma}$

Category	# Domains	WHOIS status	# Domains				
Malware Botnet Phishing Adult Spam Tracker	4,231 3,962 867 667 259 14	Not resolvable serverHold/clientHold inactive Resolvable	2,252 128 2,124 7,748				
10,000 Malicious Domain Names							

100 Popular Domains

Step II - Querying open DNS servers: combine active query resolution results with Passive DNS records

Identify modification of PDNS is challenging

Step III – Identifying PDNS: Distinguish the modified responses from PDNS and from other DNS manipulations

Finding 1: Deployment status of PDNS Services in the wild

17,601 (9.08%) PDNS resolvers in the wild within 193,888 "stable" recursive resolvers from 6 scanning experiments

Finding 1: Deployment status of PDNS Services in the wild

- 17,601 (9.08%) PDNS resolvers in the wild within 193,888 "stable" recursive resolvers from 6 scanning experiments
- PDNS resolvers are widely deployed around the world, encompassing 117 countries and regions, covering a total of 1473 AS

CC	# IP	# IP ASN		
US	6,296 (35.8%)	20115 (CHARTER-20115)	1,074 (6.1%)	
IRN	1,225 (7.0%)	3303 (SWISSCOM)	777 (4.4%)	
CN	1,205 (6.8%)	209 (CenturyLink Communications)	705 (4.0%)	
JP	1,056 (6.0%)	5617 (TPNET)	613 (3.5%)	
CH	804 (4.6%)	17506 (UCOM)	576 (3.3%)	
PL	745 (4.2%)	10796 (TWC-10796- MIDWEST)	570 (3.2%)	
MD	635 (3.6%)	21342 (AKAMAI-ASN2)	523 (3.0%)	
ID	540 (3.1%)	8926 (MOLDTELECOM-AS)	480 (2.7%)	
OM	380 (2.2%)	2519 (VECTANT)	420 (2.4%)	
RO	367 (2.1%)	50010 (Nawras-AS)	379 (2.2%)	
1	17 Countries	1,473 ASNs		

Finding 1: Deployment status of PDNS Services in the wild

- 17,601 (9.08%) PDNS resolvers in the wild within 193,888 "stable" recursive resolvers from 6 scanning experiments
- PDNS resolvers are widely deployed around the world, encompassing 117 countries and regions, covering a total of 1473 AS

CC	# IP	ASN	# IP
US	6,296 (35.8%)	20115 (CHARTER-20115)	1,074 (6.1%)
IRN	1,225 (7.0%)	3303 (SWISSCOM)	777 (4.4%)
CN	1,205 (6.8%)	209 (CenturyLink Communications)	705 (4.0%)
JP	1,056 (6.0%)	5617 (TPNET)	613 (3.5%)
CH	804 (4.6%)	17506 (UCOM)	576 (3.3%)
PL	745 (4.2%)	10796 (TWC-10796- MIDWEST)	570 (3.2%)
MD	635 (3.6%)	21342 (AKAMAI-ASN2)	523 (3.0%)
ID	540 (3.1%)	8926 (MOLDTELECOM-AS)	480 (2.7%)
OM	380 (2.2%)	2519 (VECTANT)	420 (2.4%)
RO	367 (2.1%)	50010 (Nawras-AS)	379 (2.2%)
1	17 Countries	1,473 ASNs	

Round-Trip Time (RTT) for evaluating the query performance of 155 prominent PDNSes
1.0

 Without cache, PDNS responds quicker to blocked domains than other domains

RTT (ms)

0.0

0

200

 Without cache, PDNS responds quicker to blocked domains than other domains

400

600

RTT (ms)

800

1000

With cache, the difference becomes less pronounced when caching is enabled

Round-Trip Time (RTT) for evaluating the query performance of 155 prominent PDNSes

- Without cache, PDNS responds quicker to blocked domains than other domains
- With cache, the difference becomes less pronounced when caching is enabled
- Reason of different performance: PDNS prefers to block domains before recursive resolution

Finding 3: Blocklist of PDNS

57% PDNSes block over 500 malicious domains, while 43% prominent PDNSes block fewer than 100 domains

Finding 3: Blocklist of PDNS

- 57% PDNSes block over 500 malicious domains, while 43% prominent PDNSes block fewer than 100 domains
- Conservative choice of blocklist: Preference of using a narrow set of "high-risk" domains for prominent DNS providers

Category	# Test domains	# Avg. blocked domains	PDNS Coverage
Malware	4,231	961.9	17,596 (99.97%)
Botnet	3,962	472.0	17,529 (99.59%)
Phishing	867	160.9	17,213 (97.80%)
Adult	667	119.8	12,680 (72.04%)
Spam	259	96.6	16,628 (94.47%)
Tracker	14	0.5	3,779 (21.47%)

Blocklist Similarity: several blocklists for 28 popular PDNS providers exhibit significant correlations

Blocklist Similarity: several blocklists for 28 popular PDNS providers exhibit significant correlations

Similarities between Quad9 and 3 PDNS providers are over 0.80

Blocklist Similarity: several blocklists for 28 popular PDNS providers exhibit significant correlations

Similarities between Quad9 and 3 PDNS providers are over 0.80

Similarity between SkyDNS and SafeDNS is 0.99

Blocklist Similarity: several blocklists for 28 popular PDNS providers exhibit significant correlations

Similarities between Quad9 and 3 PDNS providers are over 0.80

Similarity between SkyDNS and SafeDNS is 0.99

Similarities between Alternate DNS and other PDNSes is 0.21 in average

Secure IP is the most prevalent policy, adopted by 56.45% of PDNSes

# Rewriting Policy	# PDNS	# Policy	# Blocked Domains	# Malware	# Botnet	# Phishing	# Adult	# Spam	# Tracker
Secure IP	9,935 (56.45%)	577	483	332	58	45	27	20	1
Special-use IP	7,209 (40.96%)	351	424	371	12	12	8	20	1
No Data	822 (4.67%)	-	222	142	44	16	9	11	0
Secure CNAME	449 (2.55%)	70	544	375	58	46	24	40	1
Error Response Code	408 (2.32%)	3	362	267	28	33	13	20	1

Secure IP is the most prevalent policy, adopted by 56.45% of PDNSes

# Rewriting Policy	# PDNS	# Policy	# Blocked Domains	# Malware	# Botnet	# Phishing	# Adult	# Spam	# Tracker
Secure IP	9,935 (56.45%)	577	483	332	58	45	27	20	1
Special-use IP	7,209 (40.96%)	351	424	371	12	12	8	20	1
No Data	822 (4.67%)	-	222	142	44	16	9	11	0
Secure CNAME	449 (2.55%)	70	544	375	58	46	24	40	1
Error Response Code	408 (2.32%)	3	362	267	28	33	13	20	1

In 162 secure IPs (28%) return block notification webpage, and 14 IPs provide avenues for user complaints

I,222 PDNSes apply diverse rewriting policies per domain category

Malware

Botnet

I,222 PDNSes apply diverse rewriting policies per domain category

Malware

Botnet

PDNS groups based on the same rewriting policies, with 12 groups having over 50 PDNS servers

Group	# PDNS	Country	AS
Group 1	379 (2.2%)	Oman	50010 (Omani Qatari Tele. Company SAOC)
Group 2	378 (2.1%)	United States	7029 (Windstream Communications LLC)
Group 3	143 (0.8%)	United States	4181 (TDS TELECOM)
Group 4	119 (0.7%)	United States	7018 (AT&T Services, Inc.)
Group 5	63 (0.4%)	Romania	9050 (ORANGE ROMANIA COMMUNICATION S.A)

Security Issues of PDNS

- 3 security risks arising from flawed blocking strategy implementations
 Denial of Response (DoR) due to aggressive non-responsive policies
 - Dangling cloud IPs susceptible to takeover and misuse by attackers
 - Subversion of protective features by multiple flawed blocking strategies

implementations

- 822 PDNSes employ No Data to block malicious domains
- 28 PDNSes have DoR risk due to aggressive no-data response policies

- 822 PDNSes employ No Data to block malicious domains
- 28 PDNSes have DoR risk due to aggressive no-data response policies
- Threat Model of DoR
 - Attackers can exploit this security issue of PDNS to deny DNS resolution services for arbitrary victims by spoofing the source IP address

• 7 popular PDNS providers exhibit denial of response, even blocking the resolution of popular domain names

Resolver	DNS Vendor	# Blocked Time	# Blocked Domain	# Malware	# Botnet	# Phishing	# Adult	# Spam	# Tracker
76.76.2.1	ControlD DNS	12h	1,123	1,073	24	17	5	4	0
156.154.71.3	Neustar DNS	15m	538	390	58	63	22	4	1
156.154.71.2	Neustar DNS	15m	76	50	3	15	3	4	1
64.6.65.6	Verisign DNS	15m	440	395	20	11	9	5	0
199.85.126.10	Norton DNS	15m	75	48	6	14	3	4	0
199.85.126.20	Norton DNS	15m	82	44	7	16	9	6	0
199.85.126.30	Norton DNS	15m	80	44	6	15	10	4	1

• 7 popular PDNS providers exhibit denial of response, even blocking the resolution of popular domain names

Resolver	DNS Vendor	# Blocked Time	# Blocked Domain	# Malware	# Botnet	# Phishing	# Adult	# Spam	# Tracker
76.76.2.1	ControlD DNS	12h	1,123	1,073	24	17	5	4	0
156.154.71.3	Neustar DNS	15m	538	390	58	63	22	4	1
156.154.71.2	Neustar DNS	15m	76	50	3	15	3	4	1
64.6.65.6	Verisign DNS	15m	440	395	20	11	9	5	0
199.85.126.10	Norton DNS	15m	75	48	6	14	3	4	0
199.85.126.20	Norton DNS	15m	82	44	7	16	9	6	0
199.85.126.30	Norton DNS	15m	80	44	6	15	10	4	1

DoR attack leads to a response denial lasting up to 12 hours

Security Issue 2: Dangling PDNS Infrastructure

 Dangling PDNS Infrastructure susceptible to takeover and misuse by attackers, caused by not-in-use IPs (Dare resources)

Security Issue 2: Dangling PDNS Infrastructure

- Dangling PDNS Infrastructure susceptible to takeover and misuse by attackers, caused by not-in-use IPs (Dare resources)
- Threat Model of Dangling: Takeover threats
 - The potential takeover and abuse of a PDNS's security-orientated policy by a third-party adversary could pose serious security implications.

Security Issue 2: Dangling PDNS Infrastructure

- Dangling PDNS Infrastructure susceptible to takeover and misuse by attackers, caused by not-in-use IPs (Dare resources)
- Threat Model of Dangling: Takeover threats
 - The potential takeover and abuse of a PDNS's security-orientated policy by a third-party adversary could pose serious security implications.

7 obsolete cloud IPs employed by 21 PDNSes

[CCS'16] All your dns records point to us: Understanding the security threats of dangling dns records

Security Issue 3: Subversion of Protective Features

 Subversion of protective features by multiple flawed blocking strategies implementations

Security Issue 3: Subversion of Protective Features

- Subversion of protective features by multiple flawed blocking strategies implementations
- Flawed Implementations of PDNS
 - IO5 PDNSes return both forged (e.g., 127.42.0.148) and authoritative answers for malicious domain queries

Security Issue 3: Subversion of Protective Features

- Subversion of protective features by multiple flawed blocking strategies implementations
- Flawed Implementations of PDNS
 - IO5 PDNSes return both forged (e.g., 127.42.0.148) and authoritative answers for malicious domain queries
- Non-configured Query Types of PNDS
 - 13 PDNSes return original resolution results for types that are not configured with blocking measures, e.g., TXT records

Transparent Blocking Activity: setting up a webpage to inform users of block reasons (e.g., Malware domain) and providing complaint channels (e.g., email)

Transparent Blocking Activity: setting up a webpage to inform users of block reasons (e.g., Malware domain) and providing complaint channels (e.g., email)

Utilizing safe rewriting infrastructures: exercising increased caution when utilizing third-party resources like cloud IPs and sinkhole domains

Transparent Blocking Activity: setting up a webpage to inform users of block reasons (e.g., Malware domain) and providing complaint channels (e.g., email)

Utilizing safe rewriting infrastructures: exercising increased caution when utilizing third-party resources like cloud IPs and sinkhole domains

Defense of denial of response: forcing the client to use **DNS over TCP**, in response to clients issuing numerous DNS queries for malicious domains

Summary

Identifying DNS Methodology

- We design and implement the **first identification methodology for PDNS**, which can distinguish PDNS from other DNS manipulations
- Open-source scripts: https://github.com/MingxuanLiu/ProtectiveDNS

Understanding of PDNS Ecosystem

 We present the first active measurement study on the emerging PDNS ecosystem and find 17,601 open PDNS servers, and comprehensively understand their operational status

Security analysis of PDNS infrastructure

• We first discover three types of security flaws within PDNS operation, which enable evasion of security protection and denial of service, and report them to affected vendors and get their positive responses

Providing recommendations for PDNS implementation

Understanding the Implementation and Security Implications of Protective DNS Services

Mingxuan Liu, Yiming Zhang, Xiang Li, Chaoyi Lu,

Baojun Liu, Haixin Duan, Xiaofeng Zheng

Email: liumx@mail.zgclab.edu.cn

https://github.com/MingxuanLiu/ProtectiveDNS