
#NDSSSymposium2024

Presented by

Efficient Use-after-Free Prevention with 

Opportunistic Page-Level Sweeping

Chanyoung Park, Hyungon Moon



Use-after-Free is still Prevalent

• An increasing number of use-after-free vulnerabilities are reported every year.
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NIST NVD Database Statistics (Keyword: “use after free”)
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Use-after Free: Example

• Use-after-Free (UaF) is a bug where

a program uses a pointer to a previously freed

heap chunk.

• An attacker controlling the freed chunk

(i.e., reuse of the chunk) can manipulate

the program's behavior.
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void vuln (void) {

 system (“/bin/sh”);

}

int main (void) {

 objA = malloc(32);

 objA->func = safe_func;

           ⋮

 free(objA);

           ⋮

 objB = malloc(32);

 // An attacker may modify the 
// function pointer to vuln().

 objB->func();

}

Free

Use-after-Free

Malicious Modification



Existing Approaches

• Garbage collector-like (MarkUs, MineSweeper)

➢ Reuse delayed freed chunks after Mark-Sweep to know the dangling pointer's existence.

• One-time Allocation (FFmalloc)

➢ Only use the allocated region at once.

• Reference counting (CRCount)

• Pointer nullification (DangNULL)

• Access validation (ViK, PACMem)
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Binary-only
No Recompilation
No Custom Hardware

Recompilation
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Recompilation or Custom Hardware



Application

Garbage Collector-like: Allocation/Free
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• Garbage Collector-like approaches delay deallocations.

Quarantine List



Application

Garbage Collector-like: Marking
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• Marker determines if each chunk can be safely reused or not by memory scanning.

• Marker pauses the application process.
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Application

Garbage Collector-like: Sweeping
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• Sweeper traverses quarantine list and inserts safe objects to the free list.
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Application

Garbage Collector-like: Reuse
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• All chunks in the free list are guaranteed to be safe to reuse.
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Observations

• Garbage collector-like approaches suffer from significant overhead on the 

execution time for allocation-intensive benchmarks.

• One-time allocator (OTA) does not … why?
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Delayed Reuse Lowers Spatial Locality and Performance

• Delayed Reuse: simply delays 

deallocations and reallocate them (no 

safety check).

• Just delaying the reuse lowers spatial 

locality of temporally local allocations.

• OTA does not harm the spatial locality.
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Measurements while running
SPEC CPU 2006 xalancbmk
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• FFmalloc does not reuse virtual address space.

• OTA always allocate fresh chunks.



Our Approach

• Garbage Collector-like

➢ Significant overhead for allocation-

intensive benchmarks

• One-time Allocation

➢ Do not support indefinite applications

• HushVac

➢ Mark-Sweep allocator having allocation 

strategies of FFmalloc
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Virtual Address Space Reuse
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Reuse Virtual Pages Opportunistically

• Ok to do so because:

➢ Long quarantine list does not imply the waste of physical memory.

➢ Delaying the reuse of virtual pages does not lower spatial locality.

• Desired to do so because stop-the-world time becomes the increased exec time.
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OK to Reuse at Page Level Rather than as a Batch

• HushVac detaches physical pages without splitting VMA unlike FFmalloc.

• Remapped virtual address space enables no concerns about VMA fragmentations.
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Additional Design Choices

• Subpage reuse

• Two staged marking

➢ Concurrent marking to reduce stop-the-world cost.

• Comprehensive scanning

➢ Scanning entire memory more.
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Internal Fragmentation of FFmalloc

• Long-lived objects prevent a page from being released.
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Application

Subpage Reuse for Mitigating Internal Fragmentation
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Per-page Free List 

• HushVac maintains a per-page free list inspired by mimalloc.

• HushVac consumes the free list as much as possible.



Experimental Setup

• Ubuntu 18.04 with Linux 5.4.0-150-generic

• AMD Ryzen 5 2600

• 32GB Main Memory

• HushVac runs one mark-sweep thread and 10 marker threads

• The baseline is glibc
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Performance in Allocation-intensive Benchmarks
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HushVac is faster than Markus and has 
lower memory usage than FFmalloc.



Average Performance on SPEC 2006
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Limitations
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Frequent remap system calls 
incur performance overhead

Internal fragmentation as FFmalloc
It is impossible to fully safely reuse every page

7% overhead



Conclusion

• The root cause of overhead in garbage collector-like approaches.

➢ The spatial locality of temporally local allocations affects the performance.

➢ Simply delaying the reuse of freed chunks reduces spatial locality.

• Giving preference to top chunks, as in the OTA, results in higher spatial locality.

• Combining the strengths of the two with several design choices leads to HushVac:

➢ Allocation that is aware of spatial locality for both fresh and previously freed chunks.

➢ Reduced performance overhead compared to the garbage collector-like approach.

➢ Decreased memory overhead and additional ability to reuse chunks compared to OTA.
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