
#NDSSSymposium2024

Presented by

Efficient Use-after-Free Prevention with

Opportunistic Page-Level Sweeping

Chanyoung Park, Hyungon Moon

Use-after-Free is still Prevalent

• An increasing number of use-after-free vulnerabilities are reported every year.

1

NIST NVD Database Statistics (Keyword: “use after free”)

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Use-after Free: Example

• Use-after-Free (UaF) is a bug where

a program uses a pointer to a previously freed

heap chunk.

• An attacker controlling the freed chunk

(i.e., reuse of the chunk) can manipulate

the program's behavior.

2

void vuln (void) {

 system (“/bin/sh”);

}

int main (void) {

 objA = malloc(32);

 objA->func = safe_func;

 ⋮

 free(objA);

 ⋮

 objB = malloc(32);

 // An attacker may modify the
// function pointer to vuln().

 objB->func();

}

Free

Use-after-Free

Malicious Modification

Existing Approaches

• Garbage collector-like (MarkUs, MineSweeper)

➢ Reuse delayed freed chunks after Mark-Sweep to know the dangling pointer's existence.

• One-time Allocation (FFmalloc)

➢ Only use the allocated region at once.

• Reference counting (CRCount)

• Pointer nullification (DangNULL)

• Access validation (ViK, PACMem)

3

Binary-only
No Recompilation
No Custom Hardware

Recompilation

Recompilation

Recompilation or Custom Hardware

Application

Garbage Collector-like: Allocation/Free

4

Free List

Program

Malloc

Free

Runtime

Running Running

Marking Sweeping

• Garbage Collector-like approaches delay deallocations.

Quarantine List

Application

Garbage Collector-like: Marking

5

Program

Malloc

Free

Runtime

Running Running

Marking Sweeping

Sweeper

Marker

• Marker determines if each chunk can be safely reused or not by memory scanning.

• Marker pauses the application process.

Free List

Quarantine List

Application

Garbage Collector-like: Sweeping

6

Program

Malloc

Free

Runtime

Running Running

Marking Sweeping

Sweeper

Marker

Safe to reuse

• Sweeper traverses quarantine list and inserts safe objects to the free list.

Free List

Quarantine List

Application

Garbage Collector-like: Reuse

7

Program

Malloc

Free

Runtime

Running Running

Marking Sweeping

Sweeper

Marker

Reuse

• All chunks in the free list are guaranteed to be safe to reuse.

Free List

Quarantine List

Observations

• Garbage collector-like approaches suffer from significant overhead on the

execution time for allocation-intensive benchmarks.

• One-time allocator (OTA) does not … why?

8

perlbench gcc omnetpp xalancbmk

Ti
m

e
(s

ec
)

Delayed Reuse Lowers Spatial Locality and Performance

• Delayed Reuse: simply delays

deallocations and reallocate them (no

safety check).

• Just delaying the reuse lowers spatial

locality of temporally local allocations.

• OTA does not harm the spatial locality.

9

Measurements while running
SPEC CPU 2006 xalancbmk

Mapped

Unmapped

mmap()

Unmapped
Mapped

One-time Allocation Details

10

Heap Allocator

Program

Malloc

Free

Runtime

Running

Application

Heap High

Heap

Always Allocate
Fresh Chunk

= Low Spatial Locality

• FFmalloc does not reuse virtual address space.

• OTA always allocate fresh chunks.

Our Approach

• Garbage Collector-like

➢ Significant overhead for allocation-

intensive benchmarks

• One-time Allocation

➢ Do not support indefinite applications

• HushVac

➢ Mark-Sweep allocator having allocation

strategies of FFmalloc

11

Virtual Address Space Reuse

12

Page

Page (RW)

free(A)

Frame

Frame

Virtual Physical

Page (None)

Page (RW)
Initialized to

Zero

malloc(B)

Delayed to reuse

Release physical memory (remap)

Safely reused after mark-sweep

Ti
m

e

Reuse Virtual Pages Opportunistically

• Ok to do so because:

➢ Long quarantine list does not imply the waste of physical memory.

➢ Delaying the reuse of virtual pages does not lower spatial locality.

• Desired to do so because stop-the-world time becomes the increased exec time.

13

Page (RW)

free(A)

Frame

Page (None)
Delayed to
reuse

Release physical
memory (remap)

No Memory

perlbench gcc omnetpp

Ti
m

e
(s

ec
)

xalancbmk

OK to Reuse at Page Level Rather than as a Batch

• HushVac detaches physical pages without splitting VMA unlike FFmalloc.

• Remapped virtual address space enables no concerns about VMA fragmentations.

14

Mapped

Mapped

Unmapped

mmap()

Unmapped
Mapped

Mapped

Mapped

Remapped (no mem)

mmap()

Remapped (no mem)
MappedVMA 1

VMA 2

VMA 3

VMA 1

Additional Design Choices

• Subpage reuse

• Two staged marking

➢ Concurrent marking to reduce stop-the-world cost.

• Comprehensive scanning

➢ Scanning entire memory more.

15

Internal Fragmentation of FFmalloc

• Long-lived objects prevent a page from being released.

16

Page

Deallcations Cannot release
memory for a long
time

Allocated Region

Deallocated Region

Application

Subpage Reuse for Mitigating Internal Fragmentation

17

Heap Allocator

Program

Malloc

Free Page Metadata

Runtime

Running Running

Async
Marking

Sweeping

Sweeper

Marker

Reuse

Sync
Marking

Per-page Free List

• HushVac maintains a per-page free list inspired by mimalloc.

• HushVac consumes the free list as much as possible.

Experimental Setup

• Ubuntu 18.04 with Linux 5.4.0-150-generic

• AMD Ryzen 5 2600

• 32GB Main Memory

• HushVac runs one mark-sweep thread and 10 marker threads

• The baseline is glibc

18

Performance in Allocation-intensive Benchmarks

19

perlbench

N
o

rm
al

iz
ed

Ex
ec

u
ti

o
n

 T
im

e

gcc omnetpp xalancbmk

MarkUs FFmalloc HushVac

perlbench gcc omnetpp xalancbmk

N
o

rm
al

iz
ed

M
em

o
ry

 U
sa

ge

HushVac is faster than Markus and has
lower memory usage than FFmalloc.

Average Performance on SPEC 2006

2024-02-21 20

MarkUs FFmalloc HushVac

N
o

rm
al

iz
ed

M
em

o
ry

 U
sa

ge

HushVac is faster than Markus and has
lower memory usage than FFmalloc.

MarkUs FFmalloc HushVac

N
o

rm
al

iz
ed

Ex
ec

u
ti

o
n

 T
im

e

Limitations

2024-02-21 21

MarkUs FFmalloc HushVac

N
o

rm
al

iz
ed

M
em

o
ry

 U
sa

ge

MarkUs FFmalloc HushVac

N
o

rm
al

iz
ed

Ex
ec

u
ti

o
n

 T
im

e

Frequent remap system calls
incur performance overhead

Internal fragmentation as FFmalloc
It is impossible to fully safely reuse every page

7% overhead

Conclusion

• The root cause of overhead in garbage collector-like approaches.

➢ The spatial locality of temporally local allocations affects the performance.

➢ Simply delaying the reuse of freed chunks reduces spatial locality.

• Giving preference to top chunks, as in the OTA, results in higher spatial locality.

• Combining the strengths of the two with several design choices leads to HushVac:

➢ Allocation that is aware of spatial locality for both fresh and previously freed chunks.

➢ Reduced performance overhead compared to the garbage collector-like approach.

➢ Decreased memory overhead and additional ability to reuse chunks compared to OTA.

22

	Default Section
	슬라이드 0
	슬라이드 1: Use-after-Free is still Prevalent
	슬라이드 2: Use-after Free: Example
	슬라이드 3: Existing Approaches
	슬라이드 4: Garbage Collector-like: Allocation/Free
	슬라이드 5: Garbage Collector-like: Marking
	슬라이드 6: Garbage Collector-like: Sweeping
	슬라이드 7: Garbage Collector-like: Reuse
	슬라이드 8: Observations
	슬라이드 9: Delayed Reuse Lowers Spatial Locality and Performance
	슬라이드 10: One-time Allocation Details
	슬라이드 11: Our Approach
	슬라이드 12: Virtual Address Space Reuse
	슬라이드 13: Reuse Virtual Pages Opportunistically
	슬라이드 14: OK to Reuse at Page Level Rather than as a Batch
	슬라이드 15: Additional Design Choices
	슬라이드 16: Internal Fragmentation of FFmalloc
	슬라이드 17: Subpage Reuse for Mitigating Internal Fragmentation
	슬라이드 18: Experimental Setup
	슬라이드 19: Performance in Allocation-intensive Benchmarks
	슬라이드 20: Average Performance on SPEC 2006
	슬라이드 21: Limitations
	슬라이드 22: Conclusion

