From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive Remote Attestation

Shahriar Ebrahimi (IDEAS NCBR), Parisa Hassanizadeh (IDEAS NCBR / IPPT PAN)

February 2024

Internet Society

#NDSSSymposium2024

Artifact Evaluated

NDSS

Available

Functional

Reproduced

Remote Attestation

- Verify
 - Authenticity of
 - OS
 - Software
 - Any functionality
 - Remote devices
- Prover: Device
- Verifier: Privileged Owner
- Challenge/Response set

Traditional RA and S-o-t-A

- Trust assumptions
 - Verifier: privileged access to some data
 - Device: trust/authenticate the verifier
 - Users: continuously trust the verifier
- Single point of failure
 - Manufacturer server / Proxy verifier
 - Denial of Service (DoS) attack
- Unique challenge per device
- State-of-the-Art:

Additional trust assumptions on device or some new entities in protocol

- Trusted event triggers in device
- "Secure" smart contracts: usually based on Hyperledger
- Synchronized secure time clocks

Traditional RA and S-o-t-A

Transparent and Non-Interactive RA

- Transparency
 - Anyone
 - verify the integrity and authenticity of devices
 - without requiring any prior knowledge
 - Platform-Independence
 - New paradigm in the context of public verifiability
 - Trustless public verifiability
- Non-Interactive
 - Zero-trust and server-free
 - Global Challenges
 - Suitable to be built on top of blockchain
 - Resilience to DoS Attacks

SYMPOSIUM/202

zRA Protocol: Overview

-) Setup phase
 - Done once
 - By Manufacturer
- 2) Updated challenge
 - Periodically: per attestation interval
 - By Manufacturer
 - Independent from number of devices
- 3) Attestation
 - By device
 - Asynchronous
- 4) Verification
 - By anyone


```
Presented by
Internet
Society
```


zRA Protocol: Setup

- Merkle Tree of commitments to responses
 - Once deployed, cannot be changed
 - Manufacturer cannot turn malicious

zRA Protocol: Update Global Challenge

- Done by Manufacturer
 - One C_i for all devices per attestation interval
- Only one (32~64 Bytes) secure storage
 - Pseudo-random sequence
- Potential for being generated in MPC

Presented by

Internet Society

zRA Protocol: Attestation

 $S[\mathcal{R}_{\mathcal{T}}, l, c_i, i, p_k] =$ $\{ \text{ I know } r_i \in \mathbb{B}^{248}, i \in \mathbb{B}^h,$ such that $l = H^3_{pos}(p_k | r_i | c_i) \text{ and } O(\mathcal{T}, i) \text{ is the}$ opening (path) of l at position i to the root $\mathcal{R}_{\mathcal{T}} \}$

#NDSSSymposium2024

Query Blockchain

Get Latest Attestation

Verify the Proof

Prover

Collect Measurements

& Create RA Response

Create Merkle Path Proof

Verifier

Blockchain

Same challenge is used for attesting all devices

Query new Challenge(s)

within this period.

Submit

Latest Status

or Latest Proof

Verify the Proof

Manufacturer

Attestation

Build Merkle Tree

Merkle Root

New Challenge

(Periodically)

atational capability to

cation in the verifier's

verify a zkSNARKs proof.

or HyperLedger

Based on attestation inter

8

zRA Protocol: Attestation

zRA Protocol: Verification

- No need to
 - Know device's public key
 - Know calculations behind $r_i = f(c_i)$
 - Interact with device
 - Keep track of previous responses
 - Care about replay attacks
 - Trust the manufacturer
 - After the setup phase, manufacturer and all devices are committed to correct challenges and responses pairs.

Presented by Internet Society

Security Analysis

- Denial of service (DoS)
 - <u>Public permissionless</u> blockchain
- False attestation and Replay attacks
 - <u>Soundness</u> of the proving system + <u>Public inputs</u> of the proof: $pk|r_i|c_i$
- Message manipulation or access to the private key s_k
 - <u>Soundness</u> of the proving system + <u>security of hash</u> function: H_{pos}^3
- Manipulate ZK circuit execution
 - <u>Soundness</u> of the proving system
- Blockchain update delay (Block-time)
 - limited to the block-time of the blockchain. e.g., Ethereum 11 seconds
- Software updates and rollback attacks
 - Easily solved by <u>updating the root</u> in contract

Presented by
Internet
Society

Implementation

Manufacturer

■ JS

- Automated Verifier
 - Solidity
 - Deployed contract
 - On Sepolia testnet
 - Links in the paper
- Device
 - SnarkJS, Circom

Github: <u>https://github.com/zero-savvy/zk-remote-attestation</u>

Presented by Internet Society

	Dell	Raspberry Pi	ASUS	
	Latitude 5531	Zero 2W	Tinker board	
Memory	16.0 GiB	512MB SDRAM	2.0 GiB LPDDR3	
Processor	12th Gen Intel [®]	1GHz quad-core	1.8GHz Quad-core	
	Core [™] i5-12500H	Arm Cortex-A53	ARM Cortex-A17	
Storage	512 GB	16 GB SanDisk SD Card		
Operating	Ubuntu	Raspberry Pi	Tinker Board Debian	
System	22.04.2 LTS	OS Lite (64-bit)	Stretch V2.2.9	
Power	USB-C	Micro USB	Micro USB	
Source	Thunderbolt: 45W	power: 12W (5V)	power: 15W (5V)	
IoT	×	•	✓*	
Compatible	r	v		
▲	*		1	

[•] Dimensions: 65mm×30mm. ^{*} Dimensions: 85mm×54mm.

Experiments: Scalability & Communication cost

[SCRAPS] Petzi et al. "SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier." 31st USENIX Security Symposium (2022) [PROVE] Dushku et al. "PROVE: Provable remote attestation for public verifiability." Journal of Information Security and Applications 75 (2023)

Experiments: Attestation Performance

	Prover			Proxy Verifier [1]	
	Device	Time	Energy	/ Broker [2]	Verifier
SCARAPS [1]	Cortex M-33	1.07 s	N/A	55.4 ms	-
PROVE [2]	Virtex-7	4.6 ms	N/A	~7 ms	-
zRA	Core-i5	0.6 s	479 mJ		
	Cortex-A53	21.8 s	14.46 J	-	<1 ms
	Cortex-A17	11.9 s	53.08 J		

[1] Petzi et al. "SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier." 31st USENIX Security Symposium (2022)
 [2] Dushku et al. "PROVE: Provable remote attestation for public verifiability." Journal of Information Security and Applications 75 (2023)

Experiments: Attestation Performance

		Prover			Proxy Verifier [1]	
		Device	Time	Energy	/ Broker [2]	Verifier
	SCARAPS [1]	Cortex M-33	1.07 s	N/A	(55.4 ms)	-
Acceptabl	PROVE [2]	Virtex-7	4.6 ms	N/A	(~7 ms)	-
	le <mark>ZRA</mark>	Core-i5	0.6 s	479 mJ		<1 ms
		Cortex-A53	21.8 s	14.46 J		
		Cortex-A17	11.9 s	53.08 J		
Room for improvement				Direct e	effect on Scalability	

[1] Petzi et al. "SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier." 31st USENIX Security Symposium (2022)
 [2] Dushku et al. "PROVE: Provable remote attestation for public verifiability." Journal of Information Security and Applications 75 (2023)

Conclusion

zkSNARKs for Cyber-Physical Systems (CPS)

- High potential to increase scalability
 - Remove interactions
 - Ideal for building on top of distributed infrastructures, e.g., blockchains
 - Global challenges
- Possibility to resolve trust issues in different protocols
- M Concern
 - Computational complexity in prover (usually devices) side
- 🔭 Future work
 - More efficient implementations
 - Hardware acceleration
 - More efficient proving schemes, e.g., Spartan
 - Trade-offs: proving complexity, proof size, and verification complexity

Presented by
Internet
Society