DYNPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo¹, Kai Liang², Yanyang Zhao¹, Feifan Wu¹, Junze Yu¹, Heyuan Shi², and Yu Jiang¹ ¹Tsinghua University ²Central South University

Traditional Network Trace based Method

Employ statistical analysis on the input network traces

Traditional Network Trace based Method

Employ statistical analysis on the input network traces

• e.g., alignment-based method

 Msg1
 00
 00
 00
 14
 FF
 0F
 00
 01
 00
 62
 0D
 80
 D6
 3D
 8F
 15
 A4
 92
 9A
 09

 Msg2
 00
 0E
 00
 00
 10
 FF
 01
 0D
 80
 D6
 3D
 8F
 15
 A4
 92
 9A
 09

	7	7	1811	

Align

Msg1	00	0D	00	00	00	14	FF	0F	00	01	00	62	0D	80	D6	3D	8F	15	A4	92	9A	09
Msg2	00	0E	00	00	00	10	FF			01			0D	80	D6	3D	8F	15	A4	92	9A	09

Traditional Network Trace based Method

Employ statistical analysis on the input network traces

• e.g., alignment-based method

Weakness of the Traditional Method

 Require high-quality network traces that contain diverse messages and cover most protocol features

Weakness of the Traditional Method

 Require high-quality network traces that contain diverse messages and cover most protocol features

Weakness of the Traditional Method

- Require high-quality network traces
- Lacks precision in capturing field semantics

Insights

In protocol reverse engineering applications like fuzzing, servers' interactive capabilities are exploitable

Insights

In protocol reverse engineering applications like fuzzing, servers' interactive capabilities are exploitable

By establishing active communication with the server, we can:

- Acquire additional message samples as needed by interaction
- Extract insights from the server as it already encodes the protocol logic and understands the messages

Challenges

C1: How to interact with the server without protocol specifications

- Proper interaction requires **sequential**, well-formed messages
- Input traces serve as a reference, but require resolving session-specific identifiers

Challenges

C1: How to interact with the server without protocol specifications

- Proper interaction requires **sequential**, well-formed messages
- Input traces serve as a reference, but require resolving session-specific identifiers

C2: Effectively explore the interactive server for protocol understanding

• Applicable across protocols, inducing diverse server behaviors

DYNPRE Overview

- Dynamically assigned by the server to keep track of contextual information for each session
- Subsequent requests should carry valid values for these fields

- Dynamically assigned by the server to keep track of contextual information for each session
- Subsequent requests should carry valid values for these fields

- Dynamically assigned by the server to keep track of contextual information for each session
- Subsequent requests should carry valid values for these fields

[Session-Specific Identifier]

- Dynamically assigned by the server to keep track of contextual information for each session
- Subsequent requests should carry valid values for these fields
- Constraint relationships between sources and references can be diverse

- Dynamically assigned by the server to keep track of contextual information for each session
- Subsequent requests should carry valid values for these fields
- Constraint relationships between sources and references can be diverse
- Different identifiers may have **different lifetimes**

Recursive Analysis and Validation

Try to replay each request in the input network trace sequentially

Recursive Analysis and Validation

- 1 Try to replay each request in the input network trace sequentially
- 2 Obtain the live response and compare it with the original response in the input network trace

Recursive Analysis and Validation

- 1 Try to replay each request in the input network trace sequentially
- 2 Obtain the live response and compare it with the original response in the input network trace
 - If they are the same, continue to replay the next request

Recursive Analysis and Validation

- 1 Try to replay each request in the input network trace sequentially
- 2 Obtain the live response and compare it with the original response in the input network trace
 - If they are the same, continue to replay the next request
 - If not, this means that the response may contain sessionspecific identifiers. Get the differing byte regions and try to use constraint-solving list [x, x+1, px, px+1, null] to identify

[[]Session-Specific Identifier]

Message Rewrite Rules

	No.	Source	References	Constraint
\rightarrow	1	(4): [4451]	(1): [4451], (2): [4451], (3):[4451]	y = x
,	2	@2: [4043]	<u>@3</u> : [4043]	y = x

[Session-Specific Identifier]

[Session-Specific Identifier]

Message Rewrite Rules

No.	Source	References	Constraint
1	(4): [4451]	(1): [4451], (2): [4451], (3):[4451]	y = x
2	@2: [4043]	(3: [4043]	y = x

Based on request message probing

		Network Trace
	Req ₁	05 3B 24 02 29 83
	Rsp ₁	04 23 10 8E FE 27
	÷	
To analyze	-Req _n	05 FE 00 6A CD 53
	-Rsp _n	04 64 07 6C AE BD

Based on request message probing

1. Replay preceding requests to drive the server into an appreciate state

Based on request message probing

То

2. Flip each byte individually and scrutinize the corresponding responses

	Network Trace	
Req ₁	05 3B 24 02 29 83	Response Pool for R
Rsp ₁	04 23 10 8E FE 27	Flip: FA FE 00 6A CD 53 $P_{CD} = \frac{\theta}{\theta} = \frac{\theta}{$
:		Flip: 05 01 00 6A CD 53 $P_{CD} = 10464076C005$
Req_n	05 FE 00 6A CD 53	$\frac{1}{10000000000000000000000000000000000$
-		
-Rsp _n	04 64 07 6C AE BD	

Based on request message probing

3. Request analysis: each byte's corresponding response indicates its semantic

		Network Trace	
	Rea₁	05 3B 24 02 29 83	
	Rsp ₁	04 23 10 8E FE 27	Elip: FA FE 00 6A CD 53
	:		$Rsp_n^{\theta} 0464076C005F \dots$
	Req	05 FE 00 6A CD 53	$Rsp_n^{-1} 04 64 D8 6C AE BD \dots$
analyze	•••		Semantic Equal
Ĺ	Rspn	04 64 07 6C AE BD	Semantic Equal
			30

Based on request message probing

4. Response analysis: responses in the pool are likely to be roughly similar

		Network Trace	
F	Req_1	05 3B 24 02 29 83	Response Pool for Rea
F	Rsp ₁	04 23 10 8E FE 27	Probe: FA FE 00 6A CD 53
	÷		Rsp_n^{0} 04 64 07 6C 00 5F
F	Rea	05 FE 00 6A CD 53	$Rsp_n^1 04 64 D8 6C AE BD$
analyze			
			Provide more samples for statistical analysis
	(SP _n :	04 04 07 0L AE BD	

Based on request message probing

5. Mapping based refinement: synthesize request and response results to enhance outcomes and identify message types

Evaluation

Compared Tools

- Netplier [NDSS'21]
- BinaryInferno [NDSS'23]
- Netzob [AsiaCCS'14]
- Nemesys [WOOT'18]
- FieldHunter [IFIP'15]

Public Protocols

- IEC61850-MMS SMB2
- S7comm HTTP
- Modbus NTP
- MQTT-QoS1/2 DNS
- AMQP BGP
- SMB TFTP

Comparison on Static Dataset — Format Inference Result

Outperforms existing tools on all metrics on different-sized datasets

• Average perfectly inferred field ratio:

DYNPRE — 50%

BinaryInferno — 15% (3.3×)

Netzob — 15% (**3.3**×)

FieldHunter — 15% (**3.3**×)

Netplier — 16% (**3.1**×)

Nemesys — 31% (1.6×)

Comparison on Static Dataset — State Machine Inference Result

Metrics

- Message type inference is the key to protocol automata construction
- Treat message type inference as a clustering problem
- Use widely accepted metrics: homogeneity, completeness, and V-measure

Comparison on Static Dataset — State Machine Inference Result

Average V-measure Results

- DYNPRE 94%
- Netzob 72% (**+22%**)
- Netplier 73% (+21%)
- FieldHunter 83% (+11%)
- Nemesys Not supported
- BinaryInferno Not supported

Comparison on Enhenced Dataset

Enhance original datasets by dynamic interaction for compared tools

- *S*_{initial}: Initial static message dataset
- S_{DynPRE} : Additional message samples derived by DYNPRE
- S_{BooFuzz}: Use S_{initial} to initialize fuzzer BooFuzz and obtain the derived additional message samples

Comparison on Enhenced Dataset

Results: **improvement is limited**, and certain results are even worse. DynPRE is still superior.

		DynPRE	Netplier	BinaryInferno	Netzob	Nemesys	FieldHunter
Format Inference	Accuracy F1-score Perfection	0.84 0.72 0.51	$\begin{array}{c} \underline{0.77}, \ 0.78 \ (0.78) \\ 0.44, \ 0.44 \ (0.37) \\ 0.25, \ 0.28 \ (0.21) \end{array}$	$\begin{array}{c} 0.71,\ 0.69\ (0.69)\\ \underline{0.34},\ \underline{0.29}\ (0.35)\\ 0.14,\ \underline{0.13}\ (0.14) \end{array}$	0.70, 0.70 (0.67) 0.42, 0.42 (0.34) 0.23, 0.23 (0.15)	0.76, 0.77 (0.76) 0.56, 0.57 (0.55) 0.34, 0.35 (0.32)	$\begin{array}{c} \underline{0.71}, \ 0.74 \ (0.74) \\ \underline{0.27}, \ \underline{0.34} \ (0.35) \\ \underline{0.09}, \ 0.14 \ (0.13) \end{array}$
Inference	V-measure	0.88	0.62, 0.68 (0.62)	-	0.72, 0.72 (0.66)	-	<u>0.79</u> , <u>0.79</u> (0.81)

Format: S_{DynPRE} , $S_{BooFuzz}$ ($S_{initial}$). Underlined for <u>decreases</u>, bold for **best**

Comparison on Enhenced Dataset

Results: **improvement is limited**, and certain results are even worse. DynPRE is still superior.

		DynPRE	Netplier	BinaryInferno	Netzob	Nemesys	FieldHunter
Format Inference	Accuracy F1-score Perfection	0.84 0.72 0.51	$ \underbrace{0.77}_{0.44}, 0.78 \ (0.78) \\ \underbrace{0.44}_{0.44}, 0.44 \ (0.37) \\ \underbrace{0.25}_{0.28}, 0.28 \ (0.21) $	$\begin{array}{c} 0.71,\ 0.69\ (0.69)\\ \underline{0.34},\ \underline{0.29}\ (0.35)\\ 0.14,\ \underline{0.13}\ (0.14) \end{array}$	0.70, 0.70 (0.67) 0.42, 0.42 (0.34) 0.23, 0.23 (0.15)	0.76, 0.77 (0.76) 0.56, 0.57 (0.55) 0.34, 0.35 (0.32)	$\begin{array}{c} \underline{0.71}, \ 0.74 \ (0.74) \\ \underline{0.27}, \ \underline{0.34} \ (0.35) \\ \underline{0.09}, \ 0.14 \ (0.13) \end{array}$
Inference	V-measure	0.88	0.62, 0.68 (0.62)	_	0.72, 0.72 (0.66)	-	<u>0.79</u> , <u>0.79</u> (0.81)

Format: S_{DynPRE} , $S_{BooFuzz}$ ($S_{initial}$). Underlined for <u>decreases</u>, bold for **best**

Reason — different strategies for exploring interactive traffic

- DYNPRE: correlates the modification operations with the server feedback
- Other tools: rely exclusively on statistical analysis

A three-step evaluation process derived from protocols' application

1 Input message construction

Device	Behaviors of Input Messages	Message Format	# Triggered Behaviors
Yeelight LED Screen Light Bar Pro	Turn On Brighten	V(18) V(9) C(13) V(2) V(3) V(6) V(7) C(2) V(18) V(10) C(12) V(2) V(2) C(6) V(7) C(2)	Turn On, Brighten, Turn Off, Dim
Philips Hue Bridge	Create Group Set Name	V(7) C(28) V(15) V(9) V(57) C(1) V(11) V(7) V(1) V(3) V(36) V(57) V(57) C(1) V(7) V(1) V(5) V(5) V(1) V(1) V(2) V(21)	Set Name, Create Group, Output Name, Delete Group
Broadlink Smart Plug	Turn Off	V(32) V(4) C(2) C(2) V(2) C(10) C(1) V(1) V(2) V(4) V(2) V(26)	Turn On, Turn Off
Xiaomi Mijia Smart Camera*	Turn On	C(12) V(4) V(9) V(7) V(21) C(9) V(4) V(1) V(2) V(3) C(5) V(2) C(4)	Turn On, Turn Off
Tplink Router	Add Forbidden Domain	C(2) C(10) C(12) C(13) C(10) V(15) C(11) C(6) C(3) V(13) C(14) V(3) C(2)	Add Forbidden Domain, Clear Forbidden Domains, Output Forbidden Domains

A three-step evaluation process derived from protocols' application

• Input message construction

Protocol reverse engineering

Device	Behaviors of Input Messages	Message Format	# Triggered Behaviors
Yeelight LED Screen Light Bar Pro	Turn On Brighten	V(18) V(9) C(13) V(2) V(3) V(6) V(7) C(2) V(18) V(10) C(12) V(2) C(6) V(7) C(2)	Turn On, Brighten, Turn Off, Dim
Philips Hue Bridge	Create Group Set Name	V(7) C(28) V(15) V(9) V(57) C(1) V(11) V(7) V(1) V(3) V(36) V(57) V(57) C(1) V(7) V(1) V(5) V(5) V(1) V(1) V(2) V(21)	Set Name, Create Group, Output Name, Delete Group
Broadlink Smart Plug	Turn Off	V(32) V(4) C(2) C(2) V(2) C(10) C(1) V(1) V(2) V(4) V(2) V(26)	Turn On, Turn Off
Xiaomi Mijia Smart Camera*	Turn On	C(12) V(4) V(9) V(7) V(21) C(9) V(4) V(1) V(2) V(3) C(5) V(2) C(4)	Turn On, Turn Off
Tplink Router	Add Forbidden Domain	C(2) C(10) C(12) C(13) C(10) V(15) C(11) C(6) C(3) V(13) C(14) V(3) C(2)	Add Forbidden Domain, Clear Forbidden Domains, Output Forbidden Domains

н.

A three-step evaluation process derived from protocols' application

• Input message construction

2 Protocol reverse engineering

Application of i inferred formats

Device	Behaviors of Input Messages	Message Format	# Triggered Behaviors
Yeelight LED Screen Light Bar Pro	Turn On Brighten	V(18) V(9) C(13) V(2) V(3) V(6) V(7) C(2) V(18) V(10) C(12) V(2) V(2) C(6) V(7) C(2)	Turn On, Brighten, Turn Off, Dim
Philips Hue Bridge	Create Group Set Name	V(7) C(28) V(15) V(9) V(57) C(1) V(11) V(7) V(1) V(3) V(36) V(57) V(57) C(1) V(7) V(1) V(5) V(5) V(1) V(1) V(2) V(21)	Set Name, Create Group, Output Name, Delete Group
Broadlink Smart Plug	Turn Off	V(32) V(4) C(2) C(2) V(2) C(10) C(1) V(1) V(2) V(4) V(2) V(26)	Turn On, Turn Off
Xiaomi Mijia Smart Camera*	Turn On	C(12) V(4) V(9) V(7) V(21) C(9) V(4) V(1) V(2) V(3) C(5) V(2) C(4)	Turn On, Turn Off
Tplink Router	Add Forbidden Domain	C(2) C(10) C(12) C(13) C(10) V(15) C(11) C(6) C(3) V(13) C(14) V(3) C(2)	Add Forbidden Domain, Clear Forbidden Domains, Output Forbidden Domains

A three-step evaluation process derived from protocols' application

Input message construction

2 Protocol reverse engineering

Application of inferred formats

Device	Behaviors of Input Messages	Message Format	# Triggered Behaviors
Yeelight LED Screen Light Bar Pro	Turn On Brighten	V(18) V(9) C(13) V(2) V(3) V(6) V(7) C(2) V(18) V(10) C(12) V(2) C(6) V(7) C(2)	Turn On, Brighten, Turn Off, Dim
Philips Hue Bridge	Create Group Set Name	V(7) C(28) V(15) V(9) V(57) C(1) V(11) V(7) V(1) V(3) V(36) V(57) V(57) C(1) V(7) V(1) V(5) V(5) V(1) V(1) V(2) V(21)	Set Name, Create Group, Output Name, Delete Group
Broadlink Smart Plug	Turn Off	V(32) V(4) C(2) C(2) V(2) C(10) C(1) V(1) V(2) V(4) V(2) V(26)	Turn On, Turn Off
Xiaomi Mijia Smart Camera*	Turn On	C(12) V(4) V(9) V(7) V(21) C(9) V(4) V(1) V(2) V(3) C(5) V(2) C(4)	Turn On, Turn Off
Tplink Router	Add Forbidden Domain	C(2) C(10) C(12) C(13) C(10) V(15) C(11) C(6) C(3) V(13) C(14) V(3) C(2)	Add Forbidden Domain, Clear Forbidden Domains, Output Forbidden Domains

Based on formats inferred from the **original traffic with 7 behavior types**, the newly generated messages can **trigger 15 different behaviors** on the selected devices

Summary

- DYNPRE exploits the server's interactive capability for protocol reverse engineering
- DYNPRE supports adaptive message rewriting to allow proper interaction with the server
- DYNPRE applies an intelligent request crafting method to obtain semantic information and supplementary samples for analysis
- DYNPRE outperforms the state-of-the-art and proves effective in real-world applications

luozx19@mails.tsinghua.edu.cn

