Group-based Robustness: A General Framework for Customized Robustness in the Real World

Weiran Lin¹ Keane Lucas¹ Lujo Bauer¹ Michael K. Reiter² Neo Eyal³ Mahmood Sharif³

¹ Carnegie Mellon University

² Duke University

³ Tel Aviv University

What is robustness (against evasion attacks)?

What are evasion attacks?

What are evasion attacks?

What are evasion attacks?

Types of evasion attacks (adversary goals)

Types of evasion attacks (adversary goals)

How do we evaluate a model's robustness?

How do we evaluate a model's robustness?

by measuring the fraction of inputs on which attacks succeed

Prior to our paper

• "Robustness" is defined as either targeted or untargeted

Prior to our paper

- "Robustness" is defined as either targeted or untargeted
- "Robustness" is measured on a per-input-instance basis
 i.e. counting how many instances attacks failed on

Current robustness metrics do not always work

• 50 students and 10 instructors

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate *any* instructor to steal answers

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate *any* instructor to steal answers
- A correct classification =/=> threat

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate *any* instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat

as

Classified

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate *any* instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat

as

Classified

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate any instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat

Real identities

as

Classified

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate any instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat
 - Instructors gain no benefit by impersonating anyone

- 50 students and 10 instructors
- Instructors can legally access unreleased in answers, students cannot
 - Students try to impersonate *any* instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat
 - Instructors gain no benefit by impersonating anyone
 - Students, after impersonating other students, still cannot get access

Classified

- 50 students and 10 instructors
- Instructors can legally access unreleased answers, students cannot
 - Students try to impersonate *any* Ο instructor to steal answers
- A correct classification =/=> threat
- A misclassification =?= threat
 - Instructors gain no benefit by Ο impersonating anyone
 - Students, after impersonating other Ο students, still cannot get access
- Only students => instructors is a threat

- 50 students and 10 instructors
 - From different classes

- 50 students and 10 instructors
 - From different classes
- Instructors can legally access unreleased answers, students cannot

- 50 students and 10 instructors
 - From different classes
- Instructors can legally access unreleased answers, students cannot
- Only students => instructors is a threat

- 50 students and 10 instructors
 - From different classes
- Instructors can legally access unreleased answers, students cannot
- Only students => instructors is a threat
- Students may have different set of instructors

- 50 students and 10 instructors
 - From different classes \bigcirc
- Instructors can legally access unreleased answers, students cannot as
- Only students => instructors is a threat Classified
- Students may have different set of instructors
- Students may want to impersonate different set of instructors

Current robustness metrics do not capture the risk in students => instructors

• A vault can be opened only if *three* staff members are present and agree

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members
- For example,
 - five burglars,
 - five staff members,
 - \circ and five others

Classified as

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members
- For example,
 - five burglars,
 - five staff members,
 - \circ and five others

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members
- Attacks can still succeed:
 - If some burglars do not impersonate anyone
 - If some staff members are not impersonated

- A vault can be opened only if *three* staff members are present and agree
- A group of burglars (≥ 3) try to impersonate staff members
- Attacks can still succeed:
 - If some burglars do not impersonate anyone
 - If some staff members are not impersonated

Robustness cannot be evaluated on a per-input-instance basis

Current robustness metrics do not capture the risk in burglars => staff

Prior to our paper

- "Robustness" is defined as either targeted or untargeted
- "Robustness" is measured on a per-input-instance basis
 i.e. counting how many instances attacks failed on

Prior to our paper

- "Robustness" is defined as either targeted or untargeted
- "Robustness" is measured on a per-input-instance basis
 i.e. counting how many instances attacks failed on
- In some practical scenarios (e.g., grades, bank vault):
 - previous definition of "robustness" might not tell us how likely these attackers are to succeed!

Our contributions

• New definitions of robustness that better assess risk (#1)

Our contributions

- New definitions of robustness that better assess risk (#1)
- Enabled by new definitions:
 - Faster attacks (#2)
 - Better defenses (#3)

• We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks

- We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks
 - Similar to a cryptography game

- We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks
 - Similar to a cryptography game
 - Targeted and Untargeted robustness are special cases of group-based robustness
 - i.e. when the game has specific parameters

• We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks

• We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks

- We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks
- Group-based robustness is ~ uncorrelated with existing metrics

- We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks
- Group-based robustness is ~ uncorrelated with existing metrics
 - Implication: none of existing metrics can substitute our new metric

- We formally define *group-based robustness* as a new metric that more accurately reflects true threat of attacks
- Group-based robustness is ~ uncorrelated with existing metrics
 - Implication: none of existing metrics can substitute our new metric
 - Previously believed stronger defenses might be weaker by new metric

Our contributions

- New definitions of robustness that better assess risk (#1)
- Enabled by new definitions:
 - Faster attacks (#2)
 - Better defenses (#3)

Contribution #2: Faster attacks

• We found computationally cheaper ways to estimate group-based robustness

Contribution #2: Faster attacks

- We found computationally cheaper ways to estimate group-based robustness
- Our attacks
 - find a similar number of attacks while faster by |T| (e.g. number of instructors)

Contribution #2: Faster attacks

- We found computationally cheaper ways to estimate group-based robustness
- Our attacks
 - find a similar number of attacks while faster by |T| (e.g. number of instructors)
 - \circ $\,$ or $\,$ find many more attacks using the same amount of time $\,$

Our contributions

- New definitions of robustness that better assess risk (#1)
- Enabled by new definitions:
 - **Faster attacks** (#2) Ο
 - Better defenses (#3) Ο

• Awareness of threat => can train models to better avoid it

- Awareness of threat => can train models to better avoid it
- We built defenses that outperform existing ones in:
 - Group-based robustness

- Awareness of threat => can train models to better avoid it
- We built defenses that outperform existing ones in:
 - Group-based robustness
 - Average accuracy

- Awareness of threat => can train models to better avoid it
- We built defenses that outperform existing ones in:
 - Group-based robustness
 - Average accuracy
 - Accuracy on targeted classes:
 - Never predicting instructors is not a solution!

- Robustness is not always targeted or untargeted
- Robustness sometimes cannot be measured on a per-input-instance basis

- Robustness is not always targeted or untargeted
- Robustness sometimes cannot be measured on a per-input-instance basis

• We **need (and now have)** better definitions of robustness

- Robustness is not always targeted or untargeted
- Robustness sometimes cannot be measured on a per-input-instance basis

- We need (and now have) better definitions of robustness
- New definitions enable:
 - Better assessment of risk
 - Faster attacks
 - Better defenses

- Robustness is not always targeted or untargeted
- Robustness sometimes cannot be measured on a per-input-instance basis

- We need (and now have) better definitions of robustness
- New definitions enable:
 - Better assessment of risk
 - Faster attacks
 - Better defenses
- Check out our paper for more details!
 - Scan this

Group-based Robustness: A General Framework for Customized Robustness in the Real World

- Robustness is not always targeted or untargeted
- Robustness sometimes cannot be measured on a per-input-instance basis

- We need (and now have) better definitions of robustness
- New definitions enable:
 - Better assessment of risk
 - Faster attacks
 - Better defenses
- Check out our paper for more details!
 - Scan this

