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What is NFT?
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What is NFT?

• A unique digital identifier that is recorded on a blockchain

• Widely used in various sectors, including art, gaming, and retail

• A collection refers to a group of NFTs sharing similar features 

3



What is NFT?
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NFT transaction type
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• Mint

• Converting digital data into NFTs recorded on the blockchain

• An NFT is created by minting NULL



NFT transaction type
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• Mint

• Converting digital data into NFTs recorded on the blockchain

• An NFT is created by minting

• Burn

• Sending NFTs to an inaccessible address

• Remove NFTs from circulation

• Used for various purposes, such as operating a collection’s 

community, etc.

NULL
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NFT transaction type

7

• Sale

• Transferring an NFT ownership to another user for payment

• NFTs are typically traded with Ether 

or sometimes fungible tokens through marketplaces

• Users can partake in sales in two ways: buying and selling



NFT transaction type
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• Sale

• Transferring an NFT ownership to another user for payment

• NFTs are typically traded with Ether 

or sometimes fungible tokens through marketplaces

• Users can partake in sales in two ways: buying and selling

• Gift

• Transferring an NFT ownership to another user without payment

• Typically, gifting occurs between related users

such as avoid monitoring when manipulating markets

• Users can partake in gifts in two ways: gifting-in and gifting-out



NFT phishing scams are on the rise
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Stealing NFTs using phishing attacks

NFT Draining
(1) Spread phishing websites

www.phish.com
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Chance to get 

Our NFTs for FREE!
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Stealing NFTs using phishing attacks

NFT Draining
(1) Spread phishing websites

setApproval

ForAll

(2) Drain NFTs 

from victims

www.phish.com
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Stealing NFTs using phishing attacks

NFT Draining
(1) Spread phishing websites

setApproval

ForAll

(2) Drain NFTs 

from victims

www.phish.com

(3) Cash out drained NFTs
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Chance to get 

Our NFTs for FREE!

FAKE

CryptoPunks



Existing Countermeasures

[1] https://opensea.io [2] https://metamask.io/

[1] [2]
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Existing Countermeasures

Only effective when victims are able to 

notice and report it

Already bypassed by attackers[3]

[1] https://opensea.io [2] https://metamask.io/

[3] https://www.zerofox.com/blog/flash-report-nft-drainer-claims-to-bypass-cryptocurrency-wallet-update/

[1] [2]
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Existing Countermeasures
• The existing literature has not explored NFT drainers

• Ethereum Phishing Scam Detection
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[2] Wu, Jiajing, et al. "Who are the phishers? phishing scam detection on ethereum via network embedding." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020). 
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Existing Countermeasures
• The existing literature has not explored NFT drainers

• Ethereum Phishing Scam Detection
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Feature Based Chen, Weili, et al. [1] Ether features 2020 IJCAI

Graph Based

Wu, Jiajing, et al. [2] Trans2Vec
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Man, and Cybernetics: Systems
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But they are difficult to apply to NFT phishing scam detection!



In this work

Understand NFT drainer activity
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In this work

Understand NFT drainer activity

Design NFT drainer detection system 

18

Insights



Data Collection

Type Value

NFT 80,795,833

Address 4,733,670

Transaction 127,820,930

[1] https://www.chainabuse.com [2] https://www.cryptoscamdb.org [3] https://www.etherscan.io

[4] https://www.scamsniffer.io [5] https://www.twitter.com

[1] [2] [3] [4] [5]

• Jan-01-2022 ~ Dec-31-2022

• NFT transaction data from Ethereum blockchain

• NFT drainer accounts from five channels
• Drainer: an account that have at least one gifted-in NFTs among reported accounts

• Chainabuse ,  CryptoscamDB ,  Etherscan ,  ScamSniffer , Twitter

• 1,135 accounts
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Data Collection

Type Value

NFT 80,795,833

Address 4,733,670

Transaction 127,820,930

[1] https://www.chainabuse.com [2] https://www.cryptoscamdb.org [3] https://www.etherscan.io

[4] https://www.scamsniffer.io [5] https://www.twitter.com

[1] [2] [3] [4] [5]

• Jan-01-2022 ~ Dec-31-2022

• NFT transaction data from Ethereum blockchain

• NFT drainer accounts from five channels
• Drainer: an account that have at least one gifted-in NFTs among reported accounts

• Chainabuse ,  CryptoscamDB ,  Etherscan ,  ScamSniffer , Twitter

• 1,135 accounts
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To understand NFT drainer activity,

use NFT transaction data during Jan-01-2022 ~  Jul-31-2022

including 645 drainer accounts

https://www.chainabuse.com/
https://www.cryptoscamdb.org/
https://www.etherscan.io/
https://www.twitter.com/


Drainer Activity Characterization

Trading Behavior
• Have a short active timespan

• 60% of drainers have only 15 days or less of NFT trading activity

• 60% of regular users have 67 days or less of NFT trading activity

21
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Drainer Activity Characterization

Trading Behavior
• Acquire most NFTs from gift-ins

• 80% of drainers acquired NFTs only through gift-ins

• 8% of regular users  acquired NFTs only through gift-ins

22

Gift-in >> Buy, Mint

Gift-in, Buy, Mint

*Gift-in ratio

# "#$% &'() *+&, − +.
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Drainer Activity Characterization

Trading Behavior
• Sell or gift-out most of acquired NFTs

• 76% of drainers transferred out more than half of their NFTs

• 38% of regular users did not make any out-transactions at all
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*Out-in ratio
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NFT Drainer Detector: DRAINCLoG

Overview

24
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Drainers have unique

Trading behavior

Social context

NFT transaction context



NFT Drainer Detector: DRAINCLoG

Overview
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Social context

NFT transaction context
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Graphs
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Design 
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NFT Drainer Detector: DRAINCLoG

Overview

Feature 

Engineering User 

node attributes

NFT ownership 

edge attributes
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NFT Drainer Detector: DRAINCLoG

Overview
NFT-User Graph

User Graph

Feature 

Engineering

Transaction 

Context 

Extractor

Social

Context 

Extractor

Transaction context 

representation 

⋯

Social context 

representation

⋯

User 

node attributes

NFT ownership 

edge attributes
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NFT Drainer Detector: DRAINCLoG

Overview

Drainer 

Classifier

Feature 

Engineering

Transaction 

Context 

Extractor

Social

Context 

Extractor

Drainer

User Node Attributes

(User features)

Transaction context 

representation 

⋯

Social context 

representation

⋯
⋯

NFT-User Graph

User Graph

User 

node attributes

NFT ownership 

edge attributes
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NFT Drainer Detector Design

A. Feature Engineering

• NFT ownership attributes 
• Create representations of how users interact with NFTs

• User attributes

• Create representations of their trading behaviors
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A

NFT ownership attributes (7 dimensions) User attributes (19 dimensions)

§ In-transaction type

§ Out-transaction type

§ In-price

§ Out-price

§ Holding time

§ Average holding time

§ Average sale price

§ Number of each transaction type (5)

§ Number of collections for each transaction type (5)

§ Number of neighbors for each transaction type (4)

§ Frequency of gift-ins & sales

§ Active timespan

§ Gift-in ratio

§ Out-in ratio



• NFT-User graph Construction

• Model ownership changes in NFTs 

• Two types of Nodes: User     , NFT

• Attributed Edge

• NFT transaction context extraction

• Train a GNN on the graph

• ℎ"
# = ||&'(

) * ∑,-∈/(") 2",- & ⋅ (4
#5 67869:(:",; , ℎ,-

/ ))

30

B

NFT Drainer Detector Design

B. NFT Transaction Context Extractor

NFT-User graph 

=ℎ>?> ℎ,-
/ = * 4/ 5 9@@?>@9:> :"A , :"B , ⋯ , :"D



• User graph Construction

• Model user interactions

• One type of Attributed Node: User(Address)

• Two types of Edges: Sale       , Gift 

• Social context extraction

• Train a GNN on the graph

• Update node representations using R-GCN to consider edge types

•

NFT Drainer Detector Design

C. Social Context Extractor

31

C

User graph 

(Relational-Graph Convolution Networks) 



NFT Drainer Detector Design

D. Drainer Classifier 

Drainer Classifier 

(SVM)

Feature 

Engineering

Transaction Context 

Extractor
Social Context 

Extractor

User attributes

⋯

Social context 

representation

⋯⋯

Transaction context 

representation 

• Concatenate the three representations

• Use a SVM (Support Vector Machine) as a classifier

• Feed the final representation to a SVM

A B C

32
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• Training: Jan-01-2022 ~ July-31-2022

§ Drainers: 645

• Evaluation: Aug-01-2022 ~ Dec-31-2022

§ Drainers: 490

Evaluation

Dataset

Dataset Ratio # central nodes # total nodes # transactions

Training !" 1:80 52,245 2,010,384.0 24,745,525.0 

Evaluation

!# 1:10 6,006 2,087,436.0 28,375,070.6 

!$ 1:100 55,146 2,743,003.4 41,384,504.8

!% 1:1000 546,546 3,179,105.4 45,289,602.6 

33



34

Evaluation

Drainer Classification
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• Assumptions

• DRAINCLoG monitoring system + Victim’s reporting system

• Detected drainers are immediately blocked their trading on marketplaces

• To benefit from stolen NFTs, drainers have to quickly sell the NFTs at lower prices

• Attackers can modify their trading patterns to avoid detection

• Evaluate DRAINCLoG’s robustness under various attack scenarios

Evaluation

Robustness against Evasion Attack

35



Evaluation

Robustness against Evasion Attack
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Draining NFTs records as gifts

Gift-in >> Buy, Mint

Acquire most NFTs through gift-ins



Evaluation

Robustness against Evasion Attack
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Attack Scenario Example: Send a small amount of Ether to victim

Buying NFTs at low pricesStealing NFTs 

For each attacker, 

Change !% of gifting-in transactions to buying transactions 

by sending "% of average sale price of each NFT to victims

! ∈ 10, 30, 50 , " ∈ {1, 10, 60}



Evaluation

Robustness against Evasion Attack

Attack (L = 50) D1 (1:10) D2 (1:100)

X Pre. Rec. F1 Pre. Rec. F1

60 0.873 0.114 0.202 0.42 0.114 0.180

Original Value 0.989 0.622 0.763 0.878 0.621 0.727 

• Evasion attack results 
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Evaluation

Robustness against Evasion Attack
• Update DRAINCLoG by re-training only SVM classifier with additional 3% of attackers

39

D1 (1:10) D2 (1:100)

Pre. Rec. F1 Pre. Rec. F1

0.97 0.644 0.774 0.769 0.645 0.701

0.989 0.622 0.763 0.878 0.621 0.727 

DRAINCLoG can effectively capture complex patterns of new drainers!

Attack (L = 50) D1 (1:10) D2 (1:100)

X Pre. Rec. F1 Pre. Rec. F1

60 0.873 0.114 0.202 0.42 0.114 0.180

Original Value 0.989 0.622 0.763 0.878 0.621 0.727 



Case Study

High-Profile Attack 

0xC0f*

NFT marketplaces

Victims

+0.561 ETH

Total: Jul-27-2022 ~ May-18-2023

Now: Jul-27-2022 ~ Jul-28-2022
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Case Study

High-Profile Attack

0xC0f*

NFT marketplaces

+44.7 ETH

0xb17*

Total: Jul-27-2022 ~ May-18-2023

Now: Jul-29-2022 ~ Aug-22-2022

Victims
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Case Study

High-Profile Attack

0xC0f*

NFT marketplaces

0xb17*

0xfFF* +7.1 ETH

Total: Jul-27-2022 ~ May-18-2023

Now: Aug-22-2022 ~ Aug-24-2022
+44.7 ETH

Victims
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Case Study

High-Profile Attack

0xC0f*

NFT marketplaces

0xb17*

0xfFF*

0xAe4* +19.8 ETH

Total: Jul-27-2022 ~ May-18-2023

Now: Aug-24-2022 ~ Aug-27-2022

+7.1 ETH

+44.7 ETH

Victims
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Case Study

High-Profile Attack

0xC0f*

NFT marketplaces

0xfFF*

0xAe4* +19.8 ETH

Total: Jul-27-2022 ~ May-18-2023

Now: Aug-27-2022 ~ Aug-28-2022

+7.1 ETH

+44.7 ETH

0xAa2*

0xa16*

+131.3 ETH
Victims

0xb17*
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Case Study

High-Profile Attack

0xC0f*

NFT marketplaces

0xAe4* +19.8 ETH

Total: Jul-27-2022 ~ May-18-2023

Now: Aug-28-2022 ~ Sep-27-2022

+7.1 ETH

+44.7 ETH

0xAa2*

0xa16*

+131.3 ETH

0xaA6*

+183.0 ETH

…

Victims

0xfFF*

0xb17*
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Conclusion

• NFT phishing scams are a significant threat to the NFT ecosystem

• However, the existing literature has not explored NFT drainers

• DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers Learned on Graphs

• The first study on NFT phishing scammers (drainers)

• Conduct an in-depth study on NFT drainers

• Propose a detection system, DRAINCLoG, and verify its effectiveness and robustness
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Thank you

Please feel free to contact me regarding our research.



Evaluation

Drainer Classification

48

Model
Dataset 

(# drainer : # regular)

D1

(1:10)

D2

(1:100)

D3

(1:1000)

Metrics Pre. Rec. F1 FP/TP Pre. Rec. F1 FP/TP Pre. Rec. F1 FP/TP

Feature

based

Ether features 0.875 0.227 0.361 15.9/111.1 0.429 0.227 0.297 148.0/111.2 0.072 0.227 0.109 1433.2/111.2

E-GCN features 0.838 0.104 0.185 10.0/51.0 0.334 0.104 0.159 102.4/51.0 0.047 0.104 0.064 1045.4/51.0

DRAINCLoG user 

features 
0.976 0.618 0.757 7.4/302.4 0.779 0.618 0.689 86.2/304.2 0.277 0.627 0.385 801.8/307.2

Graph

based

E-GCN 0 0 0 0.0/0.0 0 0 0 0.0/0.0 0 0 0 0.0/0.0

E-GAT 0.832 0.037 0.071 3.7/18.1 0.349 0.037 0.067 33.6/18.0 0.055 0.037 0.044 311.5/18.1

E-GraphSAGE 0.933 0.01 0.02 0.4/5.0 0.825 0.01 0.02 1.2/5.0 0.256 0.009 0.018 12.8/4.4

N-GCN 0.98 0.157 0.271 1.6/77.0 0.867 0.157 0.265 12.0/77.2 0.435 0.157 0.231 99.9/76.9

N-GAT 0.838 0.103 0.183 9.8/50.2 0.351 0.103 0.159 93.8/50.6 0.057 0.102 0.073 825.5/50.0

N-GraphSAGE 0.982 0.411 0.58 3.8/201.4 0.811 0.411 0.546 47.4/202.6 0.323 0.415 0.363 426.3/203.4

DRAINCLoG 0.987 0.569 0.722 3.6/278.4 0.86 0.569 0.685 45.8/280.2 0.416 0.579 0.484 398.3/283.7



• Verify false positives 

ü Possess suspicious NFTs 

ü Have a persistent relationship with reported phishing accounts

ü Newly reported after 2022

• Identify 115 potential drainers among 379 false positives 

Evaluation

Identify potential Drainers
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Appendix

Ablation Study
• Analyze how each component affects performance

• Conduct the same detection task after eliminating each 
• User attributes (from Feature Engineering)

• Social context

• NFT transaction context

• Edge types in User graph
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F1 score

DRAINCLoG

User feature

NFT transaction context

Social context

Edge type in User-graph
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