
LDR: Secure and Efficient Linux Driver 

Runtime for Embedded TEE Systems

Huaiyu Yan Zhen Ling Haobo Li

Lan Luo Xinhui Shao Kai Dong

Ping Jiang Ming Yang Junzhou Luo

Xinwen Fu 

(Presenter)



Trusted Execution Environment

2

DRM Video 
Stream

Touch ID

Mobile 
Payment

TEE

➢ Secure execution environment for sensitive operations

➢ Compact to reduce attack surfaces

• Limited secure operations, such as cryptographical operations

Face ID



ARM TEE Architecture

3

TrustedUntrusted

Kernel Space

User Space

Device 
1

Device 
2

Secure WorldNormal World

Linux Kernel

Trusted
Application

TEE Native 
Device 2 

Driver

Client 
Application

Normal 
Application

Linux
Device N

Driver

Linux
Device 1 

Driver

Secure OS 
Core



Motivations

4

• TEE has poor device 

driver support

• Driver porting requires 

significant efforts

TrustedUntrusted

Kernel Space

User Space

Device 
1

Device 
2

Secure WorldNormal World

Linux Kernel

Trusted
Application

TEE Native 
Device 2 

Driver

Client 
Application

Normal 
Application

Linux
Device N

Driver

Linux
Device 1 

Driver

Secure OS 
Core



Motivations

5

• TEE has poor device 

driver support

• Driver porting requires 

significant efforts

Can we reuse existing Linux 

kernel drivers?

TrustedUntrusted

Kernel Space

User Space

Device 
1

Device 
N

Device 
2

Secure WorldNormal World

Linux Kernel

Trusted
Application

TEE Native 
Device 2 

Driver

Client 
Application

Normal 
Application

Linux
Device N

Driver

Linux
Device 1 

Driver



Intuitive Design Options

6

TrustedUntrusted Sandbox

➢ Drivers is sandboxed for a minimal Trusted Computing Base (TCB)

➢ Driver dependency functions are provided inside secure world

Symbol Table

Functions

Data Objects

Ported
Linux Kernel

Secure OS 
Core

Linux
Driver

Secure WorldNormal World

Secure OS 
Core

Linux
Driver

RPC 
Proxy

Symbol Table

Functions

Data Objects

Secure WorldNormal World

Option 1：Linux Kernel Porting Option 2：Function Redirection



Problems of Intuitive Design Options

7

Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Problems of Intuitive Design Options

8

Are all driver functions needed 

for I/O support inside TEE?

Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Problems of Intuitive Design Options

9

Do dependency functions need 

to be provided inside secure OS 

or redirected to NW Linux kernel?

Are all driver functions needed 

for I/O support inside TEE?

Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Linux Device Driver Model

10

Dev & Drv
Subsystem

Clock
Subsystem

Interrupt
Subsystem

Kernel Space

User Space

Utilities

In
it

 &
 C

o
n

fi
g

Linux Driver

Device
Info

Kernel
Objects

State Vars

Peripheral Device

Interrupt Handler Direct I/O

VFS Interface Implementation

Linux VFS Subsystems

Application Application

System Call Interface

Lib Funcs

➢ Internally, a Linux driver consists of state variables and driver functions

➢ Externally, a driver invokes library functions or Linux kernel subsystem functions



Our Approach — Twin Drivers

11

State Variable

Interrupt Handler
I/O

Init & Config
Linux Driver

Utility
VFS Interface Imp

NW State Variable

Interrupt Handler
I/O

Init & Config
NW Driver

Utility
VFS Interface Imp
Utility NW Stub

Init & Config

Interrupt Handler
I/O

VFS Interface Imp
Exported Function

LDR Function
NW Driver

❑ Init & Conf function is augmented 

with state variable transmission 

code to transfer initialized NW 

state variables to SW driver

❑ Utility function is replaced by 

utility NW stub to retrieve secure 

peripheral data



Our Approach — Twin Drivers

12

State Variable

Interrupt Handler
I/O

Init & Config
Linux Driver

Utility
VFS Interface Imp

SW State Variable

Utility
Interrupt Handler

I/O
Init & Config
SW Driver

Utility SW Stub

SW Init & Config

NW State Variable

Interrupt Handler
I/O

Init & Config
NW Driver

Utility
VFS Interface Imp
Utility NW Stub

Init & Config

Interrupt Handler
I/O

VFS Interface Imp
Exported Function

LDR Function
SW Driver

❑ VFS functions are removed

❑New Init & Conf function receives 

NW state variables from NW world 

for SW driver Init & Conf

❑ I/O functions are exported for 

trusted application use

❑ Utility SW stub is added to transfer 

secure peripheral data to NW



Subsystem
Function Stubs

Library Function 
Substitution

Driver Dependency Function Support

13

Secure OS

Library Functions
Subsystem 
Functions

Linux Kernel

NW RPC Proxy

• Reuse library functions of 

secure OS

• Construct Linux kernel 

subsystem function stubs to 

redirect kernel subsystem 

function calls back to NW Linux 

kernel

Trusted Untrusted



Subsystem
Function Stubs

Library Function 
Substitution

Isolated Execution Domain (IED)

14

Secure OS

Library Functions
Subsystem 
Functions

Linux Kernel

NW RPC Proxy

• Build sandboxes by constructing 

isolated execution domains 

(IED)

• Design IED call gate to intercept 

dependency function 

invocations issued from SW 

drivers and conduct security 

checking

IED Call Gate

Trusted Untrusted Sandbox



Driver Loading

15

• Driver loader loads SW driver 

into assigned sandbox

• Corresponding NW driver is 

loaded into Linux kernelSubsystem
Function Stubs

Library Function 
Substitution

Secure OS

Library Functions
Subsystem 
Functions

Linux Kernel

NW RPC Proxy

SW
Driver N

Driver Loader

IED Call Gate

NW Driver N

NW Driver M

SW
Driver M

Trusted Untrusted Sandbox



Subsystem
Function Stubs

Library Function 
Substitution

Driver Running

16

Secure OS

Library Functions
Subsystem 
Functions

Linux Kernel

NW RPC Proxy

• Driver manager with session 

manager coordinates SW driver 

execution

• Dependency function calls from 

SW driver go through IED gate 

and Linux kernel subsystem 

function calls are redirected to 

NW Linux kernel

SW
Driver N

Driver Loader

Driver Manager

Session Manager

IED Call Gate

NW Driver N

NW Driver M

SW
Driver M

Trusted Untrusted Sandbox



Evaluation Platform

17

1 2
3

4

5

6

II

I

1. Barometer

2. Magnetometer

3. Accelerometer

4. Ambient Light Sensor

5. Thermal Sensor/Image 

Processing Unit

6. Camera Sensor

I. MIPI CSI Socket
II. MIPI CSI Plug

• Qual-core Cortex-A9
• 1GB RAM
• Rich Device Support

IMX6Q SABRESD



Complexity of Secure Driver Generation

18

➢ Amount of engineering efforts for SW driver generation is relatively small. 

Device
Original Driver SW Driver LoC

LoC UNT DEL CHA ADD MOD rate
Image Processing Unit 10,742 10,706 18 18 372 3.80%
Ambient Light Sensor 794 748 4 42 75 15.24%
Magnetometer 537 523 11 3 84 18.25%
Accelerometer 510 498 4 8 64 14.90%
Barometer 325 312 5 8 85 30.15%
Thermal Sensor 779 773 4 2 78 10.78%

UNT: untouched code, DEL: deleted code, CHA: changed code, ADD: newly added code.

MOD rate = (DEL+CHA+ADD)/(Original Driver LoC).

SW Driver LoC Statistics



Sensor Sampling Performance

19

Device
Default

Sampling Rate

LDR without IED LDR with IED

Sampling Rate Difference Sampling Rate Difference

Magnetometer 80 83.56 +4.4% 84.82 +6.0%

Accelerometer 800 809.61 +1.2% 800.03 +0.0%

Ambient Light Sensor 11.1 11.47 +3.4% 11.17 +0.6%

Barometer 1 1.09 +8.7% 1.05 +5.3%

➢ Using SW drivers inside of the SW to read sensor data from secure 

peripherals does not degrade sensor performance



Image Capturing Performance

20

0.000

1.500

3.000

4.500

6.000

1 shot 10
shots

100
shots

1 shot 10
shots

100
shots

1 shot 10
shots

100
shots

480P 720P 1080P

La
te

n
cy

(s
)

Original

LDR

➢ For video frame capturing, there is almost no difference in performance 

between SW IPU driver inside of LDR and original Linux driver



Video Streaming Performance

21

Resolution Driver FPS
Duplicated Frames 

per 100 Frames
Dropped Frames 
per 100 Frames

Stream 
Speed

Speed 
Penalty

480P
Original 25 0 9 0.9999× -

LDR 25 0 9 0.9999× 0.00%

720P
Original 24.6 0 19.5 0.9945× -

LDR 24 8.65 4.95 0.9703× -2.43%

➢ For video streaming, SW IPU driver inside of LDR can push smooth video 

streams with low latency

• At 480P resolution, LDR has no impact on stream speed

• At 720P resolution, LDR only reduces stream speed by 2.43%.



Performance Comparison with Driverlets & MyTEE

22

Device
Default

Sampling Rate
LDR 

Sampling Rate
MyTEE Sampling 

Rate
MyTEE vs LDR

Accelerometer 800 800.03 610.19 -23.73%

Magnetometer 80 84.82 82.76 -2.43%

Ambient Light Sensor 11.1 11.17 11.17 0.00%

Barometer 1 1.05 1.10 4.76%

Sensor Data Sampling Rate Comparison with MyTEE Approaches

➢ Our approach outperforms Driverlets since record & replay approach of 

Driverlets incurs high runtime overhead

➢ Our approach outperforms MyTEE for high-performance devices such as a 

sensor device with high sampling rate



Conclusion

23

➢ A new “Twin-Driver” approach reusing existing NW Linux kernel drivers 

inside of secure OS

➢ A novel Linux Driver Runtime (LDR) for SW drivers that reuses existing 

secure OS library functions and redirects Linux kernel subsystem function calls

➢ A prototype on IMX6Q SABRESD development board and 6 adapted drivers 

with low runtime overhead



Q&A

Thanks!

24


