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Trusted Execution Environment
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➢ Secure execution environment for sensitive operations

➢ Compact to reduce attack surfaces

• Limited secure operations, such as cryptographical operations

Face ID



ARM TEE Architecture
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Motivations
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• TEE has poor device 

driver support

• Driver porting requires 

significant efforts
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Motivations

5

• TEE has poor device 

driver support

• Driver porting requires 

significant efforts

Can we reuse existing Linux 

kernel drivers?
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Intuitive Design Options
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TrustedUntrusted Sandbox

➢ Drivers is sandboxed for a minimal Trusted Computing Base (TCB)

➢ Driver dependency functions are provided inside secure world
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Option 1：Linux Kernel Porting Option 2：Function Redirection



Problems of Intuitive Design Options
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Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Problems of Intuitive Design Options
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Are all driver functions needed 

for I/O support inside TEE?

Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Problems of Intuitive Design Options
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Do dependency functions need 

to be provided inside secure OS 

or redirected to NW Linux kernel?

Are all driver functions needed 

for I/O support inside TEE?

Problems of option 1：Linux Kernel Porting

• Significant engineering efforts

• Massive TCB expansion

Problems of option 2：Function Redirection

• Performance overhead due to frequent world switching

• Security issues



Linux Device Driver Model
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➢ Internally, a Linux driver consists of state variables and driver functions

➢ Externally, a driver invokes library functions or Linux kernel subsystem functions



Our Approach — Twin Drivers
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❑ Init & Conf function is augmented 

with state variable transmission 

code to transfer initialized NW 

state variables to SW driver

❑ Utility function is replaced by 

utility NW stub to retrieve secure 

peripheral data



Our Approach — Twin Drivers
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❑ VFS functions are removed

❑New Init & Conf function receives 

NW state variables from NW world 

for SW driver Init & Conf

❑ I/O functions are exported for 

trusted application use

❑ Utility SW stub is added to transfer 

secure peripheral data to NW
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• Reuse library functions of 

secure OS

• Construct Linux kernel 

subsystem function stubs to 

redirect kernel subsystem 

function calls back to NW Linux 

kernel

Trusted Untrusted
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• Build sandboxes by constructing 

isolated execution domains 
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• Design IED call gate to intercept 

dependency function 

invocations issued from SW 

drivers and conduct security 

checking
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Driver Loading
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• Driver loader loads SW driver 

into assigned sandbox

• Corresponding NW driver is 
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Evaluation Platform
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• Qual-core Cortex-A9
• 1GB RAM
• Rich Device Support

IMX6Q SABRESD



Complexity of Secure Driver Generation
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➢ Amount of engineering efforts for SW driver generation is relatively small. 

Device
Original Driver SW Driver LoC

LoC UNT DEL CHA ADD MOD rate
Image Processing Unit 10,742 10,706 18 18 372 3.80%
Ambient Light Sensor 794 748 4 42 75 15.24%
Magnetometer 537 523 11 3 84 18.25%
Accelerometer 510 498 4 8 64 14.90%
Barometer 325 312 5 8 85 30.15%
Thermal Sensor 779 773 4 2 78 10.78%

UNT: untouched code, DEL: deleted code, CHA: changed code, ADD: newly added code.

MOD rate = (DEL+CHA+ADD)/(Original Driver LoC).

SW Driver LoC Statistics



Sensor Sampling Performance
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Device
Default

Sampling Rate

LDR without IED LDR with IED

Sampling Rate Difference Sampling Rate Difference

Magnetometer 80 83.56 +4.4% 84.82 +6.0%

Accelerometer 800 809.61 +1.2% 800.03 +0.0%

Ambient Light Sensor 11.1 11.47 +3.4% 11.17 +0.6%

Barometer 1 1.09 +8.7% 1.05 +5.3%

➢ Using SW drivers inside of the SW to read sensor data from secure 

peripherals does not degrade sensor performance



Image Capturing Performance
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➢ For video frame capturing, there is almost no difference in performance 

between SW IPU driver inside of LDR and original Linux driver



Video Streaming Performance
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Resolution Driver FPS
Duplicated Frames 

per 100 Frames
Dropped Frames 
per 100 Frames

Stream 
Speed

Speed 
Penalty

480P
Original 25 0 9 0.9999× -

LDR 25 0 9 0.9999× 0.00%

720P
Original 24.6 0 19.5 0.9945× -

LDR 24 8.65 4.95 0.9703× -2.43%

➢ For video streaming, SW IPU driver inside of LDR can push smooth video 

streams with low latency

• At 480P resolution, LDR has no impact on stream speed

• At 720P resolution, LDR only reduces stream speed by 2.43%.



Performance Comparison with Driverlets & MyTEE
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Device
Default

Sampling Rate
LDR 

Sampling Rate
MyTEE Sampling 

Rate
MyTEE vs LDR

Accelerometer 800 800.03 610.19 -23.73%

Magnetometer 80 84.82 82.76 -2.43%

Ambient Light Sensor 11.1 11.17 11.17 0.00%

Barometer 1 1.05 1.10 4.76%

Sensor Data Sampling Rate Comparison with MyTEE Approaches

➢ Our approach outperforms Driverlets since record & replay approach of 

Driverlets incurs high runtime overhead

➢ Our approach outperforms MyTEE for high-performance devices such as a 

sensor device with high sampling rate



Conclusion

23

➢ A new “Twin-Driver” approach reusing existing NW Linux kernel drivers 

inside of secure OS

➢ A novel Linux Driver Runtime (LDR) for SW drivers that reuses existing 

secure OS library functions and redirects Linux kernel subsystem function calls

➢ A prototype on IMX6Q SABRESD development board and 6 adapted drivers 

with low runtime overhead
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