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» Secure execution environment for sensitive operations
» Compact to reduce attack surfaces
« Limited secure operations, such as cryptographical operations



ARM TEE Architecture
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Intuitive Design Options

» Drivers is sandboxed for a minimal Trusted Computing Base (TCB)

» Driver dependency functions are provided inside secure world
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Option 1: Linux Kernel Porting Option 2: Function Redirection
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“ Problems of Intuitive Design Options

Problems of option 1: Linux Kernel Porting
« Significant engineering efforts
« Massive TCB expansion

Problems of option 2: Function Redirection
« Performance overhead due to frequent world switching
« Security issues
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Problems of Intuitive Design Options

Problems of option 1: Linux Kernel Porting
« Significant engineering efforts
« Massive TCB expansion

Problems of option 2: Function Redirection
« Performance overhead due to frequent world switching
« Security issues
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-- Are all driver functions needed -- Do dependency functions need
AW o L °

for 1/O support inside TEE? to be provided inside secure OS
or redirected to NW Linux kernel?



I
“ Linux Device Driver Model

> Internally, a Linux driver consists of state variables and driver functions
> Externally, a driver invokes library functions or Linux kernel subsystem functions
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Our Approach — Twin Drivers
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Our Approach — Twin Drivers
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Driver Dependency Function Support
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Isolated Execution Domain (IED)

Trusted

NW RPC Proxy

»

»

Subsystem
Functions

Untrusted Sandbox

[
[
5 S

[

[
o
o S S S S S S
L L T e
B o S e o o S e e e S e e S0 e o 0o e o o)
B e S S e S e S e e o SR e oS R Tt ete!

LI I L S e I B S L A S S A L R B S L I L

S
S S S S S S S S S5
S

e o
S S S S S
B N
S S S S S S S S S S5
L L T e
L L T e
B B R I R,
R B R R R R R,
L L e
L B I R s,
L B I R s,

S,
S

%ﬂa&%ﬁﬁ&%&?
ﬁgﬁgﬁgﬁgﬁg&
LI,

R

Subsystem
Function Stubs

Library Function
Substitution

o

"

Library Functions

Linux Kernel

Secure OS

 Build sandboxes by constructing
isolated execution domains
(IED)

« Design IED call gate to intercept
dependency function
invocations issued from SW
drivers and conduct security
checking
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Driver Loading
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Trusted Untrusted Sandbox
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Evaluation Platform

IMX6Q SABRESD

Qual-core Cortex-A9
1GB RAM
Rich Device Support

Barometer
Magnetometer
Accelerometer
Ambient Light Sensor
Thermal Sensor/Image
Processing Unit

6. Camera Sensor

|. MIPI CSI Socket
Il. MIPI CSI Plug

ks W=

17



Complexity of Secure Driver Generation

SW Driver LoC Statistics

Original Driver

SW Driver LoC

Device LoC UNT | DEL | CHA | ADD | MOD rate
Image Processing Unit 10,742 10,706 18 18 372 3.80%
Ambient Light Sensor 794 748 4 42 75 15.24%
Magnetometer 537 523 11 3 84 18.25%
Accelerometer 510 498 4 8 64 14.90%
Barometer 325 312 5 8 85 30.15%
Thermal Sensor 779 773 4 2 78 10.78%

UNT: untouched code, DEL.: deleted code, CHA: changed code, ADD: newly added code.
MOD rate = (DEL+CHA+ADD)/(Original Driver LoC).

» Amount of engineering efforts for SW driver generation is relatively small.




Sensor Sampling Performance

Sy Default LDR without IED LDR with IED
Sampling Rate | Sampling Rate | Difference | Sampling Rate | Difference
Magnetometer 80 83.56 +4.4% 84.82 +6.0%
Accelerometer 800 809.61 +1.2% 800.03 +0.0%
Ambient Light Sensor 11.1 11.47 +3.4% 11.17 +0.6%
Barometer 1 1.09 +8.7% 1.05 +5.3%

» Using SW drivers inside of the SW to read sensor data from secure
peripherals does not degrade sensor performance
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Image Capturing Performance
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» For video frame capturing, there is almost no difference in performance
between SW IPU driver inside of LDR and original Linux driver
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Video Streaming Performance

. . Duplicated Frames | Dropped Frames Stream Speed
ACEITMI Sl FPS per 100 Frames per 100 Frames Speed Penalty
Original 25 0 9 0.9999 x -
480P
LDR 25 0 9 0.9999 x 0.00%
Original 24.6 0 19.5 0.9945 x -
720P
LDR 24 8.65 4.95 0.9703 x -2.43%

» For video streaming, SW IPU driver inside of LDR can push smooth video
streams with low latency

« At 480P resolution, LDR has no impact on stream speed

« At 720P resolution, LDR only reduces stream speed by 2.43%.
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Performance Comparison with Driverlets & MyTEE

Sensor Data Sampling Rate Comparison with MyTEE Approaches

Device SamDpeI:z; IIgate Sampli:::; Rate MyTEi::em Pling MyTEE vs LDR
Accelerometer 300 800.03 610.19 -23.73%
Magnetometer 80 84.82 82.76 -2.43%

Ambient Light Sensor 11.1 11.17 11.17 0.00%
Barometer 1 1.05 1.10 4.76%

» Our approach outperforms Driverlets since record & replay approach of
Driverlets incurs high runtime overhead
» Our approach outperforms MyTEE for high-performance devices such as a
sensor device with high sampling rate
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Conclusion

» Anew “Twin-Driver” approach reusing existing NW Linux kernel drivers
inside of secure OS

» A novel Linux Driver Runtime (LDR) for SW drivers that reuses existing
secure OS library functions and redirects Linux kernel subsystem function calls

> A prototype on IMX6Q SABRESD development board and 6 adapted drivers

with low runtime overhead
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