LDR: Secure and Efficient Linux Driver
Runtime for Embedded TEE Systems

Zhen Ling g/ Haobo Li

&Xg7) XinhuiShao EXg%) Kai Dong

2Xg77 Junzhou Luo

Trusted Execution Environment

=3
o\ o
@/))\} LL'L'J
Touch ID Face ID
3 £
DRM Video Mobile
Stream Payment

» Secure execution environment for sensitive operations
» Compact to reduce attack surfaces
« Limited secure operations, such as cryptographical operations

ARM TEE Architecture

Untrusted Trusted

Normal World Secure World
Normal Client Ll Trusted
User Space Application || Application Application
Kernel Space Linux Linux TEE Native
Device 1 Device N Device 2
Driver Driver Driver
: Secure OS
Linux Kernel Core
Device Device

1 2

Untrusted Trusted

Normal World Secure World | TE,E has poor device
driver support
Normal Client ||]| Trusted Driver porting requires
User Space Application || Application Application significant efforts
Kernel Space Linux Linux TEE Native
Device 1 Device N Device 2
Driver Driver Driver
: Secure OS
Linux Kernel Core
Device Device

1 2

Untrusted Trusted

Normal World Secure World | TE,E has poor device
driver support
Normal Client ||]| Trusted Driver porting requires
User Space Application || Application Application significant efforts
Kernel Space Linux Linux TEE Native
Device 1 Device NV Device 2
Driver Driver Driver
™N
: \ Can we reuse existing Linux
Linux Kernel o
- kernel drivers?

Device Device || Device
1 2 N

Intuitive Design Options

» Drivers is sandboxed for a minimal Trusted Computing Base (TCB)

» Driver dependency functions are provided inside secure world

Untrusted Trusted Sandbox
Normal World Secure World Normal World Secure World
Symbol Table Symbol Table | | RPC
_—hl __hl Proxy
"""" Functions Functions 4~ @ Linux
0 Ported 0 | PVEr
: Linux Kernel :
Data Objects Secure OS Data Objects Secure OS
@ Core @ Core

Option 1: Linux Kernel Porting Option 2: Function Redirection

|
“ Problems of Intuitive Design Options

Problems of option 1: Linux Kernel Porting
« Significant engineering efforts
« Massive TCB expansion

Problems of option 2: Function Redirection
« Performance overhead due to frequent world switching
« Security issues

Problems of Intuitive Design Options

Problems of option 1: Linux Kernel Porting
« Significant engineering efforts
« Massive TCB expansion

Problems of option 2: Function Redirection
« Performance overhead due to frequent world switching
« Security issues

o (o]
-- Are all driver functions needed
(] Q

for 1/O support inside TEE?

Problems of Intuitive Design Options

Problems of option 1: Linux Kernel Porting
« Significant engineering efforts
« Massive TCB expansion

Problems of option 2: Function Redirection
« Performance overhead due to frequent world switching
« Security issues

(7] Q (7]
-- Are all driver functions needed -- Do dependency functions need
AW o L °

for 1/O support inside TEE? to be provided inside secure OS
or redirected to NW Linux kernel?

I
“ Linux Device Driver Model

> Internally, a Linux driver consists of state variables and driver functions
> Externally, a driver invokes library functions or Linux kernel subsystem functions

User Space

Application] Application 3

Kernel Space

System Call Interface

] i]

Linux VFS Subsystems

Lib Funcs

Dev & Drv
Subsystem

Clock
Subsystem

Interrupt
Subsystem

VFES Interface Implementation
Utilities

Interrupt Handler Direct 1/0O

Device
Info

Kernel
Objects

Init & Config

State:Vars

10

Our Approach — Twin Drivers

NW.State Variable

B Exported Function Utility NW Stub ™ NW Driver

LDR Function Q Init & Conf function is augmented
Init & Config with state varlab.le. ’fra.nsmlssmn
State Variable @ NW Driver code to transfer initialized NW
VFS Interface Imp state variables to SW driver
Utility = 0 Utility function is replaced by
Interrmla/tOHandIer utility NW stub to retrieve secure
. . ipheral
Init & Config peripheral data
Linux Driver

11

Our Approach — Twin Drivers

NW.State Variable

! Exported Function
LDR Function

Utility NW Stub © SW Driver

A VFS functions are removed

Init & Config d New Init & Conf function receives
State Variable @ NW Driver NW state variables from NW world
M for SW driver Init & Conf
Utility /0 § , iy
Interrupt Handler al/ unctlon§ are exported for
/0 Q trusted application use
S
Init & Confi N e Variable | . .
ni onfig N 3 Utility SW stub is added to transfer
Linux Driver Utility SEHE secure peripheral data to NW
Interrupt Handler. PEerip
/O

SW Init & Config
SW Driver

12

Driver Dependency Function Support

Trusted

Untrusted

NW RPC Proxy

» »

Subsystem Library Function
Function Stubs Substitution

o "

Subsystem : :
Functions Library Functions
Linux Kernel Secure OS

« Reuse library functions of

secure OS

« Construct Linux kernel

subsystem function stubs to
redirect kernel subsystem
function calls back to NW Linux
kernel

13

Isolated Execution Domain (IED)

Trusted

NW RPC Proxy

»

»

Subsystem
Functions

Untrusted Sandbox

[
[
5 S

[

[
o
o S S S S S S
L L T e
B o S e o o S e e e S e e S0 e o 0o e o o)
B e S S e S e S e e o SR e oS R Tt ete!

LI I L S e I B S L A S S A L R B S L I L

S
S S S S S S S S S5
S

e o
S S S S S
B N
S S S S S S S S S S5
L L T e
L L T e
B B R I R,
R B R R R R R,
L L e
L B I R s,
L B I R s,

S,
S

%ﬂa&%ﬁﬁ&%&?
ﬁgﬁgﬁgﬁgﬁg&
LI,

R

Subsystem
Function Stubs

Library Function
Substitution

o

"

Library Functions

Linux Kernel

Secure OS

 Build sandboxes by constructing
isolated execution domains
(IED)

« Design IED call gate to intercept
dependency function
invocations issued from SW
drivers and conduct security
checking

14

Driver Loading

Trusted

NW Driver N

NW Driver M

NW RPC Proxy

» »

Subsystem
Functions

Untrusted Sandbox

SW SW

Dri N Dri M .
Ve Ve « Driver loader loads SW driver

into assigned sandbox
: : « Corresponding NW driver is

Sub.system Library !:Uh.CtIOI’] loaded into Linux kernel

Function Stubs Substitution

Driver Loader

o "

Library Functions

Linux Kernel

Secure OS

15

Trusted Untrusted Sandbox
. SW SW « Driver manager with session
NW Driver ¥ Driver A Driver M manager coordinates SW driver
NW Driver M execution
____________ » Dependency function calls from
NW RPC Proxy [} Sub.sysjcé—m Library Function SW driver go through IED gate
Function Stubs Substitution and Linux kernel subsystem

B > Driver Loader function calls are redirected to

SulbsEET Driver Manager > [y NW Linux kernel

Elinctions Session Manager| Library Functions

Linux Kernel Secure OS

16

Evaluation Platform

IMX6Q SABRESD

Qual-core Cortex-A9
1GB RAM
Rich Device Support

Barometer
Magnetometer
Accelerometer
Ambient Light Sensor
Thermal Sensor/Image
Processing Unit

6. Camera Sensor

|. MIPI CSI Socket
Il. MIPI CSI Plug

ks W=

17

Complexity of Secure Driver Generation

SW Driver LoC Statistics

Original Driver

SW Driver LoC

Device LoC UNT | DEL | CHA | ADD | MOD rate
Image Processing Unit 10,742 10,706 18 18 372 3.80%
Ambient Light Sensor 794 748 4 42 75 15.24%
Magnetometer 537 523 11 3 84 18.25%
Accelerometer 510 498 4 8 64 14.90%
Barometer 325 312 5 8 85 30.15%
Thermal Sensor 779 773 4 2 78 10.78%

UNT: untouched code, DEL.: deleted code, CHA: changed code, ADD: newly added code.
MOD rate = (DEL+CHA+ADD)/(Original Driver LoC).

» Amount of engineering efforts for SW driver generation is relatively small.

Sensor Sampling Performance

Sy Default LDR without IED LDR with IED
Sampling Rate | Sampling Rate | Difference | Sampling Rate | Difference
Magnetometer 80 83.56 +4.4% 84.82 +6.0%
Accelerometer 800 809.61 +1.2% 800.03 +0.0%
Ambient Light Sensor 11.1 11.47 +3.4% 11.17 +0.6%
Barometer 1 1.09 +8.7% 1.05 +5.3%

» Using SW drivers inside of the SW to read sensor data from secure
peripherals does not degrade sensor performance

19

Image Capturing Performance

6.000 Original
%4500 @LDR

>

< 3,000

: <

1.500 7 . NZ AZEm\Z
7 vi ¥ 7

YN Y VY \

1shot 10 100 1shot 10 100 1shot 10 100
shots shots shots shots shots shots

480P 720P 1080P

» For video frame capturing, there is almost no difference in performance
between SW IPU driver inside of LDR and original Linux driver

20

Video Streaming Performance

. . Duplicated Frames | Dropped Frames Stream Speed
ACEITMI Sl FPS per 100 Frames per 100 Frames Speed Penalty
Original 25 0 9 0.9999 x -
480P
LDR 25 0 9 0.9999 x 0.00%
Original 24.6 0 19.5 0.9945 x -
720P
LDR 24 8.65 4.95 0.9703 x -2.43%

» For video streaming, SW IPU driver inside of LDR can push smooth video
streams with low latency

« At 480P resolution, LDR has no impact on stream speed

« At 720P resolution, LDR only reduces stream speed by 2.43%.

21

Performance Comparison with Driverlets & MyTEE

Sensor Data Sampling Rate Comparison with MyTEE Approaches

Device SamDpeI:z; IIgate Sampli:::; Rate MyTEi::em Pling MyTEE vs LDR
Accelerometer 300 800.03 610.19 -23.73%
Magnetometer 80 84.82 82.76 -2.43%

Ambient Light Sensor 11.1 11.17 11.17 0.00%
Barometer 1 1.05 1.10 4.76%

» Our approach outperforms Driverlets since record & replay approach of
Driverlets incurs high runtime overhead
» Our approach outperforms MyTEE for high-performance devices such as a
sensor device with high sampling rate

22

Conclusion

» Anew “Twin-Driver” approach reusing existing NW Linux kernel drivers
inside of secure OS

» A novel Linux Driver Runtime (LDR) for SW drivers that reuses existing
secure OS library functions and redirects Linux kernel subsystem function calls

> A prototype on IMX6Q SABRESD development board and 6 adapted drivers

with low runtime overhead

23

cwzers YR

ANHUI UNIVERSITY OF TECHNOLOGY UMASS
LOWELL

/' SOUTHEAST UNIVERSITY

24

