

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable Defenses

Chaoxiang He, Xiaojing Ma, Bin B. Zhu, Yimiao Zeng, Hanqing Hu, Xiaofan Bai, Hai Jin, and Dongmei Zhang

Presented by Bin B. Zhu

Background adversarial patch attacks pose a great

threat in real world applications

Targeted Attack in Traffic Sign Recognition

Original Patched Recognition Result

Impersonation Attack in Biometric Authentication

Original Patched Recognition Result

Typical Adversarial Patch Attacks

- **LaVAN**: localized patch using prefixed mask: min_{Ω} Δ $L_{adv}(X_\Delta$
- **LOAP**: also *optimize patch location via moving the patch in different directions.*
- **RP²** : generate a distributed graffiti-like adversarial patch (e.g., sticks)
- **IAP**: generates an *inconspicuous* patch with Adversarial Generative Networks (GAN)

Brown Bear (92.5%) \rightarrow Baseball (96.4%)

Adversarial Patch Defenses - Certifiable

• **PatchCleanser** (the state-of-the-art defense)

Two-round masking operations

Adversarial Patch Defenses - Certifiable

• **Assumptions of PatchCleanser**

• The model is robust to occlusion of a small-size mask at arbitrary locations \Rightarrow of an input image

requires that *the mask should be small enough to avoid significant degradation of the model's clean accuracy*

• The adversarial patch can be fully occluded by the mask at an appropriate location

requires *the mask to be large enough to completely cover the adversarial patch*

Our Threat Model

White-box access to the DNN model under attack

Full access to the DNN model, including its architecture and parameters

Black-box access to potential defenses against DorPatch

No knowledge of any defense (its characteristics or settings) against DorPatch

Limitations of Existing Adv. Patch Attacks

- Existing adversarial patch attacks typically employ a *localized* patch.
	- Many attacks use *predetermined and fixed* shape, location, and size of the patch
		- The patch may not be optimal, resulting in a less powerful adversarial attack
	- Adversarial pixels typically *located in a small, restricted region*
		- Exploited by certifiable robustness defenses (e.g. PatchCleanser) to detect and neutralize adversarial patches

Is Distributed Enough to Evade PatchCleanser?

- RP2 uses a distributed graffiti-like adversarial patch
	- May not be fully covered by a single mask in PatchCleanser
- Distributed adversarial patch is *insufficient* to evade PatchCleanser
	- The masking operation in PatchCleanser may *corrupt* the patch, causing it to *lose its adversarialness*
		- PatchCleanser can predict correctly
	- It cannot make adversarially patched examples certifiable by PatchCleanser (*much harder than causing misprediction*)

Desired Properties of Patch Attacks

Distributed

• Widely distributed to prevent being fully occluded by a small exploring mask

Robust to Partial Occlusions

- Robust to partial occlusions at various locations
- Not only to make PatchCleanser mispredict but also to be certifiably robust by PatchCleanser

Fully Optimized

• Patch is fully optimized, including its shape, location, and pixel values, to achieve the most effective attack within a given patch budget

Inconspicuous

- To enhance the inconspicuousness and avoid being neutralized by image processing techniques
	- Perturbed pixels should result in *structural indistinguishability* and
	- *Perceptual masking* should be considered when determining the locations and pixel values of perturbed pixels

Fullfillment of Desired Properties

• **Goal**: To encourage a patch to be widely and uniformly distributed

Density Regularization **Distributed**

- **Method:**
	- Use a set of sampling regions, A , to divide an image evenly into $|\mathcal{A}|$ parts
	- Make the density of patch pixels in each region similar by minimizing the *standard deviation* of the number of patch pixels in each sampling region over all regions in $\mathcal A$

$$
L_{den} = \sqrt{\frac{1}{|\mathcal{A}|} \sum_{\mathbf{a} \in \mathcal{A}} (M \cdot \mathbf{a} - \mathbb{E}_{\mathbf{a} \in \mathcal{A}} (M \cdot \mathbf{a}))^2}
$$

Image Dropout $\boxed{}$ Robust to Partial Occlusions

- **Goal**: robust to partial occlusions and certifiably robust by PatchCleanser
- **Method:** randomly mask out parts of the image during the patch optimization process:
	- Collect a set of possible occlusions, B , such as squares of *different sizes and positions*
	- Generate N occluded images, X^i_Δ , $i \in [1, N]$, from the patched image X_A and optimize them together
		- Randomly choose n_o occlusions from B and remove the corresponding regions from X_{Λ} to obtain each $X^{\dot t}_\Delta$

Group Lasso on Mask \blacksquare Fully Optimized

- **Goal**: fully optimized while physically realizable
- **Method**
	- Patch consists of isolated parts (groups)
		- Each group is large enough and has a regular shape
		- A group is either included in or excluded from the patch as a whole
	- Apply group lasso to the mask M to enforce group sparsity, i.e., to minimize the number of groups in the patch m

$$
L_{grp} = \sum_{l=1} \parallel M \circ G_l \parallel_2
$$

Structural Loss $\boxed{}$ Inconspicuous

- **Goal**
	- To encourage perturbed pixels to result in continuous and smooth structures
- **Method**

$$
L_{str} = \sum_{x_i \in X_{\Delta}} \frac{1}{V_i} \left(\sum_{x_j \in N(x_i)} (x_i - x_j)^2 \cdot \min_{x_j \in N(x_i)} (x_i - x_j)^2 \right)
$$

 : approximate the *local perceptual masking* power at a pixel x_i

total variation loss: \triangleright Encourages smooth changes among neighboring pixels for each perturbed pixel

minimal variance loss

- \triangleright Small when a neighboring pixel has a similar value
- \triangleright Allows preserving a sharply changing pixel as long as at least one neighboring pixel has a similar pixel value (e.g., an edge pixel)

Generation of Adversarial Patches

• DorPatch's *optimization problem* (together with image dropout)

$$
\min_{M,\Delta} L_{adv} + \lambda_1 \cdot L_{grp} + \lambda_2 \cdot L_{den} + \lambda_3 \cdot L_{str}
$$

s.t. $||X_{\Delta} - X||_p \le \epsilon$

- It is a Mixed Integer Programming (MIP) problem
	- Mask M consists of 0s and 1s: cannot be directly optimized
- Solving it with our two-stage method
	- 1st stage: Generate mask
		- Relax the binary constraint on M by allowing continuous values in [0, 1] (i.e., as a *transparency mask*) to obtain a fractional mask
		- Threshold M to obtain a binary mask by selecting the groups with the highest values
	- 2nd stage: Generate patch's pixel values
		- Fix the binary mask M to determine the optimal pixel values of the adversarial patch.

Attacking Performance against PatchCleanser

CIFAR10 ImageNet

Perceptual Quality

Physical-world Attack Performance

Attacking Performance against Adaptive Defenses

- \triangleright the robust WRN28-4 model from Hydra is adversarially trained using a PGD attack with 50 steps and an 8/255 L_{∞} budget
- \triangleright the robust ResNet110 model from DOA is trained using a *rectangular occlusion attack* with an 11 \times 11 rectangle (patch budget=12%)

Adversarial Training PatchCleanser Using Multiple Masks

- \triangleright PatchCleanser can be extended to defend against a distributed adversarial patch comprising multiple separated subpatches by *applying multiple masks to mask out multiple regions simultaneously*
- ➢ The number of model inferences *explodes* **exponentially** as number of subpatches increases

Conclusion

- A novel adversarial patch attack, DorPatch, that can evade both certifiable and empirical defenses against adversarial patch attacks, while being physically realizable for launching real-world attacks
	- Applies *group lasso to the patch's mask, and employs image dropout, density regularization, and structural loss* to generate a *fully optimized, distributed, occlusion-robust, and inconspicuous* adversarial patch
- Comprehensive experiments
	- DorPatch can **effectively evade PatchCleanser**, the state-of-the-art certifiable defense, and empirical defenses against adversarial patch attacks
	- Moreover, DorPatch can *make PatchCleanser certify the wrong predictions* of the adversarially perturbed examples, *creating a false sense of security for the users*
	- DorPatch achieves the best attack performance and perceptual quality among all adversarial patch attacks
- DorPatch poses a serious challenge to the practical applications of DNN models and urges the development of more robust defenses against such attacks