
K-LEAK: Towards Automating the
Generation of Multi-Step Infoleak Exploit
against Linux Kernel

Zhengchuan Liang
Xiaochen Zou
Chengyu Song
Zhiyun Qian

Memory Error

OS kernels are major targets of attackers

Memory errors

● Read/write in unintended ways
● Out-of-bound (OOB): r/w using an oob pointer
● Use-after-free (UAF): r/w using a dangling pointer

Exploitation

● OOB: Allocate an obj at the oob location
● UAF: Reallocate an obj

Infoleak

Exploit mitigation techniques in OS kernels

● E.g., KASLR
● Efforts to circumvent them

Infoleak

● Disclose mem layout / content
● Achieved by exploiting vulnerabilities

Infoleak Approaches

Two broad categories

● Side-channel-based
○ E.g., micro-architectural side-channel

● Memory-error-based
○ By exploiting memory errors

Memory-error-based Infoleak

Starting point

● One memory-error (e.g., UAF or OOB).

Goal

● To leak sensitive info out of the kernel

OS kernel

Memory-error-based Infoleak

Leverage unintended reads and writes to create an infoleak data-flow

Infoleak data-flow

● Source: sensitive information
● Sink: leaking sink

Sensitive
info

Leaking
sink

Userspace /
Network

Goal: Assist the automated generation of
infoleak exploits given a memory error (with PoC)

Infoleak
Exploits

Mem Error
(w/ PoC)

Motivating Example

(1) UAF read error

ax25_setsockopt()

ax25->n2 = ax25_dev->values[N2];

obj ax25

int n2;
UAF
read write

obj ax25_dev

int values[];

Motivating Example
(0) Reallocate obj mbus

mon_bus_init()

mbus->u_bus = bus;

(1) UAF read error

ax25_setsockopt()

ax25->n2 = ax25_dev->values[N2];

bus

obj ax25

int n2;
UAF
read writewrite

obj ax25_dev

int values[];

obj mubs

u_bus;

Motivating Example

(2) Leak

ax25_getsockopt()

val = ax25->n2;
copy_to_user(..., &val, sizeof(int));

copy_
to_

user

(0) Reallocate obj mbus

mon_bus_init()

mbus->u_bus = bus;

(1) UAF read error

ax25_setsockopt()

ax25->n2 = ax25_dev->values[N2];

bus

obj ax25

int n2;
UAF
read writewrite

obj ax25_dev

int values[];

obj mubs

u_bus;

Multiple strategies
A Large Search Space

UAF/OOB
read

UAF/OOB
write

New
UAF/OOB

read

New
syscall

Infoleak

New
UAF/OOB

write

sycall 2sycall 1sycall 0

Modeling unintended data-flow

● Memory errors: dereferences of invalid pointers
● Data-flow between memory LOAD and STORE operations

copy_to
_userbus

obj ax25_dev

int values[100];

obj ax25

int n2;UAF
read write

obj mubs

u_bus;write

Technical Challenge 1

Modeling data-flow across system calls

sycall 2sycall 1sycall 0

copy_to
_userbus

obj ax25_dev

int values[100];

obj ax25

int n2;UAF
read write

obj mubs

u_bus;write

Technical Challenge 2

Modeling additional memory errors

● A single memory error may not directly be exploitable.
● Create additional memory errors

UAF/OOB
read

UAF/OOB
write

New
UAF/OOB

read

New
syscall

Infoleak

New
UAF/OOB

write

Technical Challenge 3

Our Work: Graph-based Framework

A graph-based data-flow reasoning and search framework.

● Crafting infoleak exploits
● =>
● Searching for data-flow fragments in the graph

Large search space: multiple strategies to achieve infoleaks

● Handled through a unified graph search

Our Work: Graph-based Framework

Unique features

● Handling intended and unintended dataflow
● Across the boundary of syscalls
● Derivation of intermediate primitives (i.e., new memory errors)

Large search space: multiple strategies to achieve infoleaks

● Handled through a unified graph search

Maximize the chance of generating infoleaks

sycall 2sycall 1sycall 0

copy_to
_userbus

UAF
read writewrite

&mbus->u_bus &ax25->n2 &ax25->n2&ax25_dev->
values[N2]

Nodes

● Variable nodes
● LOAD nodes
● STORE nodes

M-DFG

Edges

● Data edge
○ RAW edge

● Pointer edges
○ Pointer variable -> LOAD/STORE

tmp

Uniqueness

● No obj node
● Pointer edge
● Unintended df

Overview

Problem scope

● Automate infoleak exploit generation
● 𐄂 Control flow hijacking or end-to-end privilege escalation

Key Insight

● Additionally model unintended data-flows introduced by memory errors

Workflow

ExtractKernel
Code M-DFG

Extend Search

Extract intended M-DFG (Static Analysis)

Extend M-DFG

Search M-DFG (Static Analysis + Dynamic Verification)

Infoleak
Paths

Mem Error
(w/ PoC)

Input:

kernel code + a memory error (w/ PoC)

Output:

Infoleak paths

Workflow: Extract Intended M-DFG
Points-to analysis

Graph Construction

● Create nodes and link with edges
● Summary-based, Inter-procedural

ExtractKernel
Code M-DFG

Extend Search Infoleak
Paths

Mem Error
(w/ PoC)

Workflow: Extend M-DFG
Extend M-DFG with unintended data-flows

● Capability of the memory error
○ (1) Slab cache
○ (2) Offset/length

ExtractKernel
Code M-DFG

Extend Search Infoleak
Paths

Mem Error
(w/ PoC)

Workflow: Extend M-DFG (cont.)

RAW edge

● STORE -> LOAD
● Models intended and unintended data-flows

RAW rule to add unintended RAW edge

STORE s: *ptr = val1;

LOAD l: val2 = *ptr;

Objects in points-to info

val1 -> s -> l -> val2
if both ptr alias

Workflow: Search on M-DFG

In each iteration, extend M-DFG and do two searches on M-DFG

● Infoleak
● Controlled pointers (new memory errors)

ExtractCode M-DFG

Extend Search Infoleak
Paths

Mem
Error

Workflow: Search on M-DFG (cont.)

Infoleak search

● A path in M-DFG can transfer info to leaking sink.

New memory error search

● Look for r/w pointers controlled by the attacker.

attacker-controlled pointer
var

LOAD/STORE

sensitive
info

leaking
sink

Workflow: Search on M-DFG (cont.)

Dynamic verification to verify each data-flow path

● Not all infoleak paths in M-DFG are valid
○ CFG
○ RAW edges

● SymExe
○ segment-by-segment

Evaluation

250 syzbot-exposed memory bugs

● K-LEAK is able to find infoleak paths in 21 bug reports
● Four kinds of infoleak strategies

○ R, W, R+W, R+R

Evaluation

11 CVEs

● 7 successful cases

Failure cases

● Cannot create illegal free primitive
● Infoleak through control-flow
● Stack memory error

Conclusion

K-LEAK automates the infoleak exploits for Linux kernel

Uncovers various exploit strategies

Find previously unknown infoleaks

Thank you!

