OBSan: An Out-Of-Bound Sanitizer
to Harden DNN Executables

Yanzuo Chen, Yuanyuan Yuan, Shuai Wang

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

THE DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING
ATEMRBERTEER

© EERAAS !
THE HONG KONG UNIVERSITY OF .
llM SCIENCE AND TECHNOLOGY k@

DNN Executables on the Rise

e Deep learning (DL), Deep neural networks (DNN)

e Deployment Situation

o Many heterogeneous environments to handle
o Need for better optimizations tailored to them

DNN Executables on the Rise

e Solution: DL compilers

Smlvm O GLOW NNFusion n

DL Compilers (in a Nutshell)

Input: Trained DNN mode]
Conversion to graph-aware IR
Graph- and low-level optimizations
Output: DNN executables

Hardening Executables

e DL compilers are still relatively new

Hardening Executables

e Traditional software
0 Hardened: Abnormal behaviors detected & intercepted
o AddressSanitizer (ASan)
o UndefinedBehaviorSanitizer (UBSan)
o and more...

e & DNN executables?

Can't we just enable ASan?

e Or: What protection do DNN exe’s need?

Can't we just enable ASan?

e Characteristics of DNN exe's:

o Machine-generated code (= rigorous),

o For math (= pure) functions.

o = Anomaly not in code, but encoded in data values
o = No ASan, etc.

Out-of-Bound (OOB) Behaviors

e Generalization of “anomalies in data values”
e Typically cause undesired outputs

e |dea: Normal behaviors captured by bounded metrics

o Neuron activations
o Gradients in backpropagation

e Metrics OOB = Abnormal behaviors

OBSan: An Out-Of-Bound Sanitizer

Motivation: Capture normal behaviors
Alerts when OOB behaviors discovered
First work to harden DNN exe's

Use cases

o Detecting unwanted/malicious inputs,
o Mitigating blackbox attacks,

o Enabling feedback-driven fuzzing, ...

10

Wait, did you say AE detection?

e Many prior works to detect adversarial examples (AE)

e |t's difficult to apply them here

o DL compilers’ inability to support
o Effectiveness vs efficiency (As high as 7000% overhead)

11

OBSan: Design & Implementation

e Variants

o FOBSan: Based on (forward) neuron activations
o BOBSan: Based on (backward) gradients

e Currently on TVM; portable

12

OBSan: Design & Implementation

__

i required by FOBSAN

Training Data

Q Input Data O DNN Model/Executable

L O output Data) Pipeline Phase Record Mode ;
Unprotected | | TVM & OBSAN Relay OB SAN
Model Frontend Optlmlzatlons Instrument :

S i OBSAN TVM Backend :
Predictions | : i Ao Build
i “model in PyTorch/ONNX/etc. formats Detect Mode Optimizations Optimizations

Oy O3
(a) DNN model (b) Instrumenting DNN models (c) Hardened DNN exe

Test Data

TVM Backend
L Optimizations

Recorder
Executable

Hardened
Executable

Range Data

13

OBSan: Design & Implementation

O Input Data O DNN Model/Executable

L O Output Data O Pipeline Phase
Unprotected | | TVM & OBSAN Relay
Model i | Frontend Optlmlzatlons

(a) DNN model

model in PyTorch/ONNX/etc. formats

14

OBSan: Design & Implementation

__

required by FOBSAN

Training Data

L O Input Data (O DNN Model/Executable Test Data

Output Data Pipeline Ph
oD @ Pl Record Mode TVM Backend Recorder
l L Optimizations Executable

’| QLB ’ Range Data | |
Instrument | ¢ = |
OBSAN TVM Backend :
AR A Build
Detect Mode Optimizations Optimizations

0, O3
(b) Instrumenting DNN models (c) Hardened DNN exe

Hardened
Executable

15

OBSan: Design & Implementation

Test Data

L O Input Data O DNN Model/Executable

: Output Data Pipeline Phase
Test Data O R O R

Unprotected
Model

(a) DNN model (c) Hardened DNN exe

Hardened
Executable

model in PyTorch/ONNX/etc. formats

16

Evaluation: OOB Detection

Normal
ResNet50 - DenseNetl121 ResNet50 DenseNetl21
2 .
2| | brownregion brown region
Broken a / /
1/ L L
OOB Score OOB Score OOB Score OOB Score
(a) OOB score distributions produced by (b) OOB score distributions produced by
AE FOBSAN. BOBSAN.
perception-broken | undefined | AE
FOBSAN v X v
Undef BOBSAN A A v

17

Evaluation: Performance Overhead

e Optimizations
o Quantization
o Checks debloating
o Parameter optimization for BOBSan

e Overhead: FOBSan — 48%; BOBSan — -34%

18

Evaluation: Performance Overhead

e Comparison with existing methods
o Faster than the most accurate (10x)
o More accurate than the fastest (e.g. FP 1% vs 20%)
o OBSan strikes a balance

19

Downstream Applications

e Feedback-Driven Fuzzing

o Extend OBSan to output neuron coverage data
o 10x more mispredictions triggered (= effective fuzzing)

20

Downstream Applications (cont.)

e Online AE attack mitigation
o Attacker: SOTA blackbox AE generation algorithm
o No access to model parameters
o Makes queries to generate AE inputs

21

Downstream Applications (cont.)

e FOBSan + BOBSan = HOBSan (Hybrid OBSan)

o 56~95% attacks intercepted
o Up to 9x more #queries needed

22

Conclusion

e Emerging trend: DNN executables
e Need: More security protection

e OBSan: First work to harden DNN executables

o Design, implementation, results, downstream applications
o ¢« Potential

23

More Info

e Source code, other materials

o sites.google.com/view/oob-sanitizer (

e (Contact me
o Yanzuo Chen (ychenjo@cse.ust.hk)

24

Performance Data

OBSAN Model Infer. time (ms) | OBSAN |FP, o | FNge [FNpp /04
variant Vanilla | OBSAN |Overhead | ratio ratio ratio
ResNet50 1.22 2.19 79.51% 1.40% |0.20% | 49.79%
FOBSAN | GoogLeNet | 3.79 3.12 -17.68% | 2.41% |0.00% | 26.02%
w/ opt. |DenseNet121| 2.65 4.80 81.13% 1.21% |[5.11% | 21.43%
Average 2.55 3.37 47.65 % 1.67% |1.77% | 32.41%
ResNet50 1.22 0.82 -32.79% | 6.31% |0.00% | 65.79%
FOBSAN | GooglLeNet | 3.79 1.67 -55.94% | 9.38% |0.00% | 75.96%
w/ opt. |DenseNetl121| 2.65 2.28 -13.96% | 4.72% |9.64% | 73.62%
Average 2.55 1.59 -34.23% | 6.80% |3.21% | 71.79%

25

Setup of online AE attacker

| Attacker backtracks
;when no response (rk_%)

@ AE

@ mutated image
@ seed image

oy &

;¢ DNN prediction
(use as feedback)

26

