
OBSan: An Out-Of-Bound Sanitizer
to Harden DNN Executables

Yanzuo Chen, Yuanyuan Yuan, Shuai Wang
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

1



DNN Executables on the Rise

● Deep learning (DL), Deep neural networks (DNN)
● Deployment Situation

○ Many heterogeneous environments to handle
○ Need for better optimizations tailored to them

● Solution: DL compilers

NNFusion
2



DNN Executables on the Rise

● Deep learning (DL), Deep neural networks (DNN)
● Deployment Situation

○ Many heterogeneous environments to handle
○ Need for better optimizations tailored to them

● Solution: DL compilers

NNFusion
3



DL Compilers (in a Nutshell)

● Input: Trained DNN model
● Conversion to graph-aware IR
● Graph- and low-level optimizations
● Output: DNN executables

4



Hardening Executables

● DL compilers are still relatively new
● Traditional software

○ 🛡 Hardened: Abnormal behaviors detected & intercepted
○ AddressSanitizer (ASan)
○ UndefinedBehaviorSanitizer (UBSan)
○ and more…

● 🤔 DNN executables?

5



Hardening Executables

● DL compilers are still relatively new
● Traditional software

○ 🛡 Hardened: Abnormal behaviors detected & intercepted
○ AddressSanitizer (ASan)
○ UndefinedBehaviorSanitizer (UBSan)
○ and more…

● 🤔 DNN executables?

6



Can’t we just enable ASan?

● Or: What protection do DNN exe’s need?
● Characteristics of DNN exe’s:

○ Machine-generated code (⇒ rigorous),
○ For math (⇒ pure) functions.
○ ⇒ Anomaly not in code, but encoded in data values
○ ⇒ No ASan, etc.

7



Can’t we just enable ASan?

● Or: What protection do DNN exe’s need?
● Characteristics of DNN exe’s:

○ Machine-generated code (⇒ rigorous),
○ For math (⇒ pure) functions.
○ ⇒ Anomaly not in code, but encoded in data values
○ ⇒ No ASan, etc.

8



Out-of-Bound (OOB) Behaviors

● Generalization of “anomalies in data values”
● Typically cause undesired outputs
● Idea: Normal behaviors captured by bounded metrics

○ Neuron activations
○ Gradients in backpropagation

● Metrics OOB ⇒ Abnormal behaviors

9



OBSan: An Out-Of-Bound Sanitizer

● Motivation: Capture normal behaviors
● Alerts when OOB behaviors discovered
● First work to harden DNN exe’s
● Use cases

○ Detecting unwanted/malicious inputs,
○ Mitigating blackbox attacks,
○ Enabling feedback-driven fuzzing, ...

10



Wait, did you say AE detection?

● Many prior works to detect adversarial examples (AE)
● It’s difficult to apply them here

○ DL compilers’ inability to support
○ Effectiveness vs efficiency (As high as 7000% overhead)

11



OBSan: Design & Implementation

● Variants
○ FOBSan: Based on (forward) neuron activations
○ BOBSan: Based on (backward) gradients

● Currently on TVM; portable

12



OBSan: Design & Implementation

13



OBSan: Design & Implementation

14



OBSan: Design & Implementation

15



OBSan: Design & Implementation

16



Evaluation: OOB Detection

17

Normal

Broken

AE

Undef



Evaluation: Performance Overhead

● Optimizations
○ Quantization
○ Checks debloating
○ Parameter optimization for BOBSan

● Overhead: FOBSan → 48%; BOBSan → -34%
● Comparison with existing methods

○ Faster than the most accurate (10x)
○ More accurate than the fastest (e.g. FP 1% vs 20%)
○ OBSan strikes a balance

18



Evaluation: Performance Overhead

● Optimizations
○ Quantization
○ Checks debloating
○ Parameter optimization for BOBSan

● Overhead: FOBSan → 48%; BOBSan → -34%
● Comparison with existing methods

○ Faster than the most accurate (10x)
○ More accurate than the fastest (e.g. FP 1% vs 20%)
○ OBSan strikes a balance

19



Downstream Applications

● Feedback-Driven Fuzzing
○ Extend OBSan to output neuron coverage data
○ 10x more mispredictions triggered (⇒ effective fuzzing)

20



Downstream Applications (cont.)

● Online AE attack mitigation
○ Attacker: SoTA blackbox AE generation algorithm
○ No access to model parameters
○ Makes queries to generate AE inputs

● FOBSan + BOBSan = HOBSan (Hybrid OBSan)
○ 56~95% attacks intercepted
○ Up to 9x more #queries needed

21



Downstream Applications (cont.)

● Online AE attack mitigation
○ Attacker: SoTA blackbox AE generation algorithm
○ No access to model parameters
○ Makes queries to generate AE inputs

● FOBSan + BOBSan = HOBSan (Hybrid OBSan)
○ 56~95% attacks intercepted
○ Up to 9x more #queries needed

22



Conclusion

● Emerging trend: DNN executables
● Need: More security protection
● OBSan: First work to harden DNN executables

○ Design, implementation, results, downstream applications
○ 👀 Potential

23



More Info

● Source code, other materials
○ sites.google.com/view/oob-sanitizer  (                             )

● Contact me
○ Yanzuo Chen (ychenjo@cse.ust.hk)

24



Performance Data

25



Setup of online AE attacker

26


