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DNN Executables on the Rise

e Deep learning (DL), Deep neural networks (DNN)

e Deployment Situation

o Many heterogeneous environments to handle
o Need for better optimizations tailored to them



DNN Executables on the Rise

e Solution: DL compilers
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DL Compilers (in a Nutshell)

Input: Trained DNN mode]
Conversion to graph-aware IR
Graph- and low-level optimizations
Output: DNN executables



Hardening Executables

e DL compilers are still relatively new



Hardening Executables

e Traditional software
0 Hardened: Abnormal behaviors detected & intercepted
o AddressSanitizer (ASan)
o UndefinedBehaviorSanitizer (UBSan)
o and more...

e & DNN executables?



Can't we just enable ASan?

e Or: What protection do DNN exe’s need?



Can't we just enable ASan?

e Characteristics of DNN exe's:

o Machine-generated code (= rigorous),

o For math (= pure) functions.

o = Anomaly not in code, but encoded in data values
o = No ASan, etc.



Out-of-Bound (OOB) Behaviors

e Generalization of “anomalies in data values”
e Typically cause undesired outputs

e |dea: Normal behaviors captured by bounded metrics

o Neuron activations
o Gradients in backpropagation

e Metrics OOB = Abnormal behaviors



OBSan: An Out-Of-Bound Sanitizer

Motivation: Capture normal behaviors
Alerts when OOB behaviors discovered
First work to harden DNN exe's

Use cases

o Detecting unwanted/malicious inputs,
o Mitigating blackbox attacks,

o Enabling feedback-driven fuzzing, ...
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Wait, did you say AE detection?

e Many prior works to detect adversarial examples (AE)

e |t's difficult to apply them here

o DL compilers’ inability to support
o Effectiveness vs efficiency (As high as 7000% overhead)
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OBSan: Design & Implementation

e Variants

o FOBSan: Based on (forward) neuron activations
o BOBSan: Based on (backward) gradients

e Currently on TVM; portable
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OBSan: Design & Implementation
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OBSan: Design & Implementation
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OBSan: Design & Implementation

____________________________________________________________________________

required by FOBSAN

Training Data

L O Input Data (O DNN Model/Executable Test Data

Output Data Pipeline Ph
oD @ Pl Record Mode TVM Backend Recorder
l L Optimizations Executable

’| QLB ’ Range Data | |
Instrument | ¢ = |
OBSAN TVM Backend :
AR A Build
Detect Mode Optimizations Optimizations

0, O3
(b) Instrumenting DNN models (c) Hardened DNN exe

Hardened
Executable

15



OBSan: Design & Implementation
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Evaluation: OOB Detection
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Evaluation: Performance Overhead

e Optimizations
o Quantization
o Checks debloating
o Parameter optimization for BOBSan

e Overhead: FOBSan — 48%; BOBSan — -34%
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Evaluation: Performance Overhead

e Comparison with existing methods
o Faster than the most accurate (10x)
o More accurate than the fastest (e.g. FP 1% vs 20%)
o OBSan strikes a balance
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Downstream Applications

e Feedback-Driven Fuzzing

o Extend OBSan to output neuron coverage data
o 10x more mispredictions triggered (= effective fuzzing)
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Downstream Applications (cont.)

e Online AE attack mitigation
o Attacker: SOTA blackbox AE generation algorithm
o No access to model parameters
o Makes queries to generate AE inputs
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Downstream Applications (cont.)

e FOBSan + BOBSan = HOBSan (Hybrid OBSan)

o 56~95% attacks intercepted
o Up to 9x more #queries needed
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Conclusion

e Emerging trend: DNN executables
e Need: More security protection

e OBSan: First work to harden DNN executables

o Design, implementation, results, downstream applications
o ¢« Potential
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More Info

e Source code, other materials

o sites.google.com/view/oob-sanitizer (

e (Contact me
o Yanzuo Chen (ychenjo@cse.ust.hk)
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Performance Data

OBSAN Model Infer. time (ms) | OBSAN |FP, o | FNge [FNpp /04
variant Vanilla | OBSAN |Overhead | ratio ratio ratio
ResNet50 1.22 2.19 79.51% 1.40% |0.20% | 49.79%
FOBSAN | GoogLeNet | 3.79 3.12 -17.68% | 2.41% |0.00% | 26.02%
w/ opt. |DenseNet121| 2.65 4.80 81.13% 1.21% |[5.11% | 21.43%
Average 2.55 3.37 47.65 % 1.67% |1.77% | 32.41%
ResNet50 1.22 0.82 -32.79% | 6.31% |0.00% | 65.79%
FOBSAN | GooglLeNet | 3.79 1.67 -55.94% | 9.38% |0.00% | 75.96%
w/ opt. |DenseNetl121| 2.65 2.28 -13.96% | 4.72% |9.64% | 73.62%
Average 2.55 1.59 -34.23% | 6.80% |3.21% | 71.79%

25



Setup of online AE attacker

| Attacker backtracks
;when no response (rk_%)

@ AE

@ mutated image
@ seed image

oy &

;¢ DNN prediction
(use as feedback)
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