Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey Entry Pairing

Mohit Kumar Jangid

Yue Zhang

Zhiqiang Lin

The Ohio State University

NDSS March, 2023

Outline

Background

- Motivation
- What's in the Model?
- Key Design Ideas
- Results
- Conclusion

Passkey Entry

Passkey Entry

Devices without display

- headphones
- speaker
- smart lights
- smart locks

Bluetooth Pairing Protocols

Pairing

- Numeric Comparison
- Passkey Entry

Other Pairings

- Just works
- Out of Band

Bluetooth Pairing Protocols

Bluetooth Secure Pairing

- Numeric Comparison
- Passkey Entry

Other Pairings

- Just works (vulnerable to MiTM attacks)
- Out of Band (security depends on individual implementation)

General Principle

"It is not possible to establish an authenticated session key without existing secure channels already being available."

Collin Boyd, "Security architectures using formal methods," in *IEEE Journal on Selected Areas in Communications*, vol. 11, no. 5, pp. 694-701, June 1993, doi: 10.1109/49.223872.

Human Interaction Channel

Numeric Comparison

PassKey Entry

- Background
- Motivation
- What's in the Model?
- Key Design Ideas
- Results
- Conclusion

Motivation

. . .

Prior attacks on Bluetooth

- MisBonding (NDSS 2014)
- Static Passcode (PUC 2018)
- Co-located (USENIX SEC 2019)
- BadBluetooth (NDSS 2019)
- BLESA (USENIX WOOT 2020)
- BlueMirror (IEEE S&P 2021)
- Method Confusion (IEEE S&P 2021)

Attack Impact

Used ubiquitously in billions of devices

How can we systematically and rigorously reason about system security?

Formal Methods

- Reason **complete** modeled system state
- Reason about
 - Presence of bugs (e.g. fuzzing, testing)
 - Absences of bugs
- Customized system environment
 - Threat model
 - Concurrent protocol sessions
 - Human interaction

Security Analysis

Numeric Comparison

Security Analysis

Numeric Comparison

Passkey Entry

Manual Kormal

Tamarin Prover

- Symbolic reasoning
- Unbounded verification logic

Approach of Formal Modelling

Formal modelling involves

- Protocol sequence
- Security properties
- Custom threat assumptions
- Protocol environment
 - Bluetooth device ownership
 - Bit level granularity
 - Human Interaction

Approach of Formal Modelling

Formal modelling involves

- Protocol sequence
- Security properties
- Custom threat assumptions
- Protocol environment
 - Bluetooth device ownership
 - Bit level granularity
 - Human Interaction

Variability and flexibility to build **Infrastructure**

Approach of Formal Modelling

Formal modelling involves

- Protocol sequence
- Security properties
- Custom threat assumptions
- Protocol environment
 - Bluetooth device ownership
 - Bit level granularity
 - Human Interaction

Variability and flexibility to build **Infrastructure**

Strategy to design an efficient infrastructure!

Method Confusion Attack

- Parallel Passkey Entry and
 Numeric Comparison instance
- Asymmetric Human Interaction
- Value format abstraction
- Loops and bit Calculations

Method Confusion Attack

- Parallel Passkey Entry and Numeric Comparison instance
- Asymmetric Human Interaction
- Value format abstraction
- Loops and bit Calculations

Hypothesis

Target a comprehensive attack

Method Confusion Attack

- Parallel Passkey Entry and Numeric Comparison instance
- Asymmetric Human Interaction
- Value format abstraction
- Loops and bit Calculations

Hypothesis

Target a comprehensive attack

Build thorough and precise model

Method Confusion Attack

- Parallel Passkey Entry and Numeric Comparison instance
- Asymmetric Human Interaction
- Value format abstraction
- Loops and bit Calculations

Hypothesis

Target a comprehensive attack

Build thorough and precise model

Access to a large attack surface

Method Confusion Attack

- Parallel Passkey Entry and Numeric Comparison instance
- Asymmetric Human Interaction
- Value format abstraction
- Loops and bit Calculations

Hypothesis

Target a comprehensive attack

Build thorough and precise model

Access to a large attack surface

Discover a broad classes of attacks

- Background
- Motivation
- What's in the Model?
- Key Design Ideas
- Results
- Conclusion

Numeric Comparison

Targeted Attack: Method Confusion

A thorough and precise model

Long and Complex Protocol

- Parallel Numeric
 Comparison and Passkey
 Entry pairing
- Many sub-configuration
- Asymmetric human interaction
- Loop of message exchanges

Challenge

Complex Model \Rightarrow Complex Verification

- Heavy verification burden
 - Long pairing sequences
 - Constraints-heavy security properties
 - Equational theory variations
- Very large traces
- Unconventional abstraction

Scalability is a big challenge for Formal Methods.

- Background
- Motivation
- What's in the Model?
- Key Design Ideas
- Results
- Conclusion

Long Pairing Sequences

Numeric Comparison

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

- Divide and conquer
- Model protocol component separately
- Verify individually and then merge

Unite Common Section

- Merge common operations
- Branch-off distinct operations
 - Authentication phase
 - Random/Static passcode
 - Show/Enter configuration

Unite Common Section

- Merge common operations
- Branch-off distinct operations
 - Authentication phase
 - Random/Static passcode
 - Show/Enter configuration

Unite Common Section

- Merge common operations
- Branch-off distinct operations
 - Authentication phase
 - Random/Static passcode
 - Show/Enter configuration

Equational Theory Operations Burden

Equational Theory Operations Burden

- Built-in Diffie-Hellman equational theory
 - Discrete logarithm hardness
 - Logarithmic operations
 - Group theory

builtins: diffie-hellman

Reduced operation load!

- Built-in Diffie-Hellman equational theory
 - Discrete logarithm hardness
 - Logarithmic operations
 - Group theory

User-defined DH theory

- Discrete logarithm hardness
- Logarithmic operations
- Group theory

functions: dhs/1, dhp/1, dha/2, dhb/2

equations: dha(a, dhp(b)) = dhb(b, dhp(a))
/* Diffie Hellman equation theory

dhp(x): derive DH public key using DH
 private random parameter x
 dha(): derive shared key at intiator device A
 dhb(): derive shared key at responder device B
*/

Constraints Heavy Security Properties

Constraints Heavy Security Properties

11

Standard Authentication Constraints lemma auth_B:
 "B_rcv(uid, addrA, addrB, data, key) @b
 & not (Ex #i. MakeIntruder(uid) @i)
 ==> (Ex A_send(uid, addrA, addrB, data, key) @a & #a < #b)
 & not (Ex B_rcv(uid2, addrA2, addrB2, data2, key) @b2 & not(#b2 = #b))
 & not (Ex B_rcv(uid2, addrA2, addrB2, data, key2) @b2 & not(#b2 = #b))</pre>

Lighter Lemma Variations

Standard Authentication Constraints

Minimal Constraint

for Attack

```
lemma auth B:
   "B rcv(uid, addrA, addrB, data, key) @b
    & not (Ex #i. MakeIntruder(uid) @i )
    ==> (Ex A send(uid, addrA, addrB, data, key) @a & #a < #b)
       & not (Ex B rcv(uid2, addrA2, addrB2, data2, key) @b2 & not(#b2 = #b))
       & not (Ex B rcv(uid2, addrA2, addrB2, data, key2) @b2 & not(#b2 = #b))
   11
lemma data steal from B:
    "B send(uid1, addrA, addrB, data, key) @a
     & not (Ex MakeIntruder(uid1) @i )
     & A rcv(uid2, addrA, addrB, data, key) @b
     ==>
         not (Ex MakeIntruder(uid2) @i )
    11
```

Very Large Traces

Very Large Traces

Very Large Traces

Unconventional Abstraction

Literal Protocol Accuracy Trap

- Messages are CMACed in each iteration
- Easy brute force guess by Intruder
- Symbolic model

Easy Guess

Single Robust Model

- Background
- Motivation
- What's in the Model?
- Modeling and Challenges
- Results
- Conclusion

Even before discovering the Target Attack (Method Confusion)

First Authentication Failure

Static Passcode Attack (2018)

- Bluetooth devices allow user to set same *passcode* in multiple sessions.
- Convenience feature ⇒ Technical vulnerability
- Freshness attack

Pers Ubiquit Comput (2018) 22:55-67 DOI 10.1007/s00779-017-1081-6

ORIGINAL ARTICLE

Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5.0 and its countermeasure

Second Authentication Failure

- New Attack Vector: Group Guessing Attack
- Incorrect fix to static passcode
- Possible if non-thread-safe random functions used (e.g. c++ threading functions)

Third Authentication Failure

Reflection Attack + Typing Attacks (2021)

- Reflecting the public keys + Same type-format of commitment
- Uniform/Symmetrical verification computations

BlueMirror: Reflections on Bluetooth Pairing and Provisioning Protocols

Fourth Authentication Failure

Method Confusion Attack (2021)

- Cross-pairing passcode exchange
- Human error to confuse in pairing methods

Method Confusion Attack on Bluetooth Pairing

Publisher: IEEE
Cite This

Maximilian von Tschirschnitz ; Ludwig Peuckert ; Fabian Franzen ; Jens Grossklags

All Authors

R

892

Paper

Citations

Full

Text Views

Abstract:
Bluetooth provides encryption, authentication, and integrity protection of its connections. These protection

Description of Oceations

Fifth Authentication Failure

- New Attack Vector: Ghost Attack based on compromised device
- Exploitable for only Passkey Entry pairing
- Hardness to validate receiving device

Summary of Attacks

Verification Times

Attack

Lemmas

- Background
- Motivation
- What's in the Model?
- Key Design Ideas
- Results
- Conclusion

Conclusion

- In-depth formal model of Bluetooth pairing
 - Verified confidentiality and authentication
 - Incremental updates

• Insights to tackle scalability of formal model.

Tamarin Models are available at

https://github.com/OSUSecLab/bluetooth-pairing-formal-verification

Thank you

Mohit Kumar Jangid

Yue Zhang

Zhiqiang Lin

The Ohio State University

follow up questions jangid.6@osu.edu