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Introduction

e Video traffic has experienced an even higher growth with the advent of

streaming services.
e Recent developments in deep learning (DL) have given rise to various video
analytics such as health care diagnosis.
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Video Compression

In order to maximize the quality of experience (QoE), video compression is a
key enabler for the aforesaid applications.
Video compression employs rate-distortion (R-D) optimization to adapt to

different bandwidth constraints.
o Lower D requires higher R.
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DL-based Video Compression

e Recently, DL-based video compression achieves impressive results by replacing

all the components in the standard codecs with deep neural networks (DNNs).
o It has been explored by the Moving Picture Experts Group (MPEG) for adoption in
the next-generation video codecs.
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Adversarial Attacks in DNNs

e Unfortunately, DNNs are known to be susceptible to adversarial examples.
o Small perturbations added to the inputs of a DNN can cause it to misclassify the
perturbed inputs.
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Motivation 1

e Compression techniques have been employed to remove the adversarial effect
in several works!*™.
e Video compression can remove the state-of-the-art video classification attacks.
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Motivation 1

e Compression techniques have been employed to remove the adversarial effect

in several works!*™.
e Video compression can remove the state-of-the-art video classification attacks.
e Can a DL-based video compression be vulnerable to adversarial examples?
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Motivation 2

e DL-based video compression models®”! have a fixed R-D relationship through
offline training.
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[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019.

[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020.

[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2021.



Motivation 2

e DL-based video compression models®”! have a fixed R-D relationship through
offline training.
e Can an adversary manipulate the R-D relationship arbitrarily?
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Motivation 2

e DL-based video compression models®”! have a fixed R-D relationship through
offline training.
e Can an adversary manipulate the R-D relationship arbitrarily?
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Motivation 2

e DL-based video compression models®”! have a fixed R-D relationship through
offline training.
e Can an adversary manipulate the R-D relationship arbitrarily?
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Motivation 3

e The state-of-the-art works on video classification attacks!®?! didn’t consider
video compression in their threat model.
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Motivation 3

e The state-of-the-art works on video classification attacks!®?! didn’t consider

video compression in their threat model.

e Can an adversary target towards front-end video sources and also affect a
downstream video recognition system?
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Motivation 4

® Video compression group a series of frames into sequences called Group of

Pictures (GOP) ! to allow back-end users to access video streams at any time.
o Three types of GOP structures are used in DNN-based video compression systems.
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Motivation 4

® Video compression group a series of frames into sequences called Group of

Pictures (GOP) ! to allow back-end users to access video streams at any time.
o Three types of GOP structures are used in DNN-based video compression systems.

e Can well-crafted perturbations break down temporal coding structures?

peanATERRE __WIATHATEES LELLEr

P-
7 s 9 10Frame Display order 1 10Frame Displayorder1 2 3 4 5 6 7 8 9 10 1qFrame
7 9 10 Coding order 1 10 Codingorder1 5 4 6 7 3 9 8 10 11 2

Display order 1 2
Coding order 1 2

(a) Non-hierarchical [3] (b) Hierarchical-P [6] (¢) Hierarchical-B [7]

5
5

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2019.
[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020.
[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. Proceedings of the IEEE/CVF conference on computer vision 15

and pattern recognition, 2021.



Contributions

Perform the first systematic study of adversarial attacks on DL-based video
compression and downstream video recognition systems.

Propose four new adversarial attacks, dubbed RoVISQ, that result in high-impact
security and QoE consequences.

Construct a well-designed universal perturbation that is invariant to the
underlying DNN model, encoding parameters, and input videos.

Show the resiliency of RoVISQ attacks against various defenses.

_____________________________________________

PSNR PSNR PSNR
“ | OR ——1 OR —
L 3 e SEa——
Live Video Bit-rate Bit-rate Bit-rate
Basketball

B T O mEr o
Video Decoder Sl -

Recognition

_____________________________________________ ’ 16

_—————_——_—_———_/




Threat Model

e Attack Scenarios
o Adversary adds small perturbations to a stored video to subvert the video
compression over a long period of time.

Raw Input Perturbed Input

Raw Input Perturbed Input
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Threat Model

e Attack Scenarios

o There are two attack scenarios.
m Offline Attack: sample-wise perturbations that are independently added to
each sample.
m Online Attack: well- crafted universal perturbations that can be used to attack
any given video sequence at any time step.




Threat Model

Distortion (D)

»

® Adversary’s Goal

o Selectively degrade the bit-rate R and/or distortion level D compared to the R-D

relationship from the pre-trained model.

m Video Quality Attack -> Low quality

m Bandwidth Attack -> Buffering, Low-Resolution Video
m RD Attack -> Low quality, Buffering, Low-Resolution Video

m Video Classification Attack
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Threat Model

e Adversary’s Capability and knowledge
o Offline Scenario

* Compression rate, GOP structure
m We assume that the adversary knows every encoding parameters.

m We assume the attacker has white-box access to an open-source model.
m Our perturbations are independently added to each sample because the attack
latency is no constrained.
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Threat Model

e Adversary’s Capability and knowledge
©  Online Scenario

* Compression rate, GOP structure
m We assume that the adversary doesn’t know any encoding parameters.

m  We study both white-box and black-box settings for DNN models.
m Attacker is capable of injecting perturbations onto the real-time video stream.
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Our Offline Attack Construction



Offline Attack Construction

In offline scenario, the raw frames are stored in the storage device.
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Offline Attack Construction

® Our adversary adds the small perturbations to the input frames stored in the
storage.
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Offline Attack Construction

® For example,

1st GOP

Adversarial perturbations

Perturbed input frames
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Offline Attack Construction

e Video Compression groups a series of input frames into GOP.

Perturbed input frames Perturbed input frames
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Offline Attack Construction

® Foragiven £, the n-th coding order in the g-th GOP is mapped to a new time step ¢ using

a deterministic function my(g,n)

Perturbed input frames Perturbed input frames
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Offline Attack Construction

® \We quantify the video compression performance based on two important measures.

O Bit-rate

O Distortion (mean squared error)

Bitrate (R)
Distortion (D)

Ver Bitrate (R)
Distortion (D)
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Offline Attack Construction

® We formulate the QoE factors for the g-th GOP from the bit-rate and the distortion:
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Offline Attack Construction

® To generate the perturbations, the adversary maximizes the following loss function.

Video Quality Attack
Hiagx Leomplg) st [|[Aglly <ee A“ = 0) R(%A;tt;)ck
. S
Eo+A-Qi(X,Y,)  if€=0 2
L comp (9)=4 Qo (Bg) +A-Eq if £=1 E Ba”d‘(’?‘zhﬁ\tt%k
Qo(By)+A-Q1(X,Y,) if&E=2 o >

v

¢ determines the attack type. Bit-rate (R)
€cis the upper bound of the L-infinity norm of the perturbation.
A determines the target video compression model by controlling R-D trade-off.
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Offline Attack Construction

® Adversarial Loss for Downstream Video Classification
F Y)— max F.(Y) (Untargeted)
Lo C(Y)( _) ;sc(y) ( ) g
n;aich (Y)-F.(Y) (Targeted)

Fc(}:’) indicates the probability of the video belonging to a specific class C.
C(Y) maps a video to the class with the maximum probability. F (}—,)
c

-------------------------------
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Offline Attack Construction

® Finally, we integrate all the loss functions to simultaneously derive perturbations on

video compression and classification.
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Our Online Attack Construction



Challenges of Online Attack

® Online adversarial attack is particularly challenging.

o What is the compression rate of video compression?

Model'
Model® q
Model® .
Model

Distortion (D)

Bit-rate (R)

o  Which mapping function my(-) does victim video compression use?
Mapping function depends on the GOP structures.

o How to align the perturbations with the target video sequence?

] .
S e e = »video stream

offset of mismatch

o Contents of the video sequences are unknown.

Each content has a different distribution of video data.
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Online Attack Construction

® \We train our universal perturbations that are agnostic to @compression ratio,

@GOP structure, and @input, which is suitable for online attack.
o We average the loss values across all training videos available to the attacker.

Training Dataset
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Online Attack Construction

® Real-time Adversarial Attacks on Entire Systems

Live Video

M ()

— - - ——

Tm(-)




Experimental Results

e Evaluation Setup

o Baselines
m Gaussian (Casel):0] = 0Op =— OB = €., Gaussian (Case ll): 01 = 2 -€.,0p=0p = €,

e \White-box Attack Performance
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Experimental Results

e Black-box Attack Performance

<Attack performance against conventional codecs>

Surrogate Video Quality  Bandwith  RD _ Gaussian
Attack Attack Attack Noise
’, \ PSNR  H.265 347 155 362 171
. (dB) ~H264 310 103 348 131

Universal - H.265 +45.5% +784%  +738%  +62.1%

PP —Ho64 +347% +652%  +618%  +459%

Perturbations

<Attack performance against unseen DNN models>
Video Quality ~ Bandwith RD Gaussian

oo T mm mm o e e e —
N e e o e o e o o o o o = o

Training video Attack Attack Attack Noise
i1 PSNR (@B) 237 087 246 157
Bpp +184% 325%  +299%  +17.3%
Public vio PSNR (B) 231 092 248 144
) Bpp +19.1% 304%  +270%  +17.8%
Video Vs vz PSNR (@8) 344 091 355 .63
Compression via PSNR(@B) 247 095 331 163
N , Bpp +186% 294%  +302%  +152%
Semmmmmm== - vis PSNR(@B) 249 20.88 253 172
Bpp +17.6% +32.8% +30.6% +17.4%
6 PSNR (@B) 238 2098 236 165

Bpp +18.3% +31.4% +32.1% +17.8% 38




Experimental Results

e \White-box Attacks on Video Classification

O

We evaluate the success rate when directed towards a downstream video classifier and provide
comparisons with state-of-the-art attacks on video classification.

As seen, our attack consistently achieves the highest success rate.

In particular, we obtain over 90% success rate on the UCF-101 and Jester datasets.
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Experimental Results

e Black-box Attacks on Video Classification
o The proposed adversarial perturbations are transferable to unseen video classification models,
outperforming previous attacks.

Surrogate

/7 \ N \ Victim Attack Success Rate (%)

| I ) | Wl ek A=256 512 1024 2048
: : Universal : GeoTrap [36] 64 168 185 324
I I Perturbations I TPN U3D [71] 74 17.5 194 36.1
| | \  [73] “Bandwidth (I3D) 713 769 796 824
1 1 1 Bandwidth (SlowFast) 73.2 778 806 815
I o . I I GeoTrap [36] 112 222 389 546
, Trainingvideo ‘ I SlowFast "U3D [7‘1)] 102 241 370 602
! ! ! [21] ~“Bandwidth (I3D) 732 769 787 815
: . : : Bandwidth (TPN) 741 750 806 824
| Public | \ GeoTrap [36] 83 241 417 426
I DNN Model I |  IBBD U3 65 167 398 481
I I I [13] ~Bandwidth (SlowFast) 704 769 815 833
\ / / Bandwidth (TPN) 722 741 769 806
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Evaluation of Existing Defenses

e Defense Construction

o We comprehensively evaluate different defense mechanisms against our attacks. There
are very few defenses available for adversarial video classification.

o We implement new defense mechanisms that rely on signal transformations to remove
adversarial perturbations

m Adversarial Training
m Video Denoising

m JPEG Image Compression

é’" 6t Video Compression
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Experimental Results

e Attack Visualization

DvC
AR

B,
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(a) No Attack
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Conclusion

® We presents the first systematic study on adversarial attacks to deep

learning-based video compression systems.

e Our comprehensive experiments show that our attacks outperform noise

baselines and previously proposed attacks in both offline and online settings.

e Furthermore, our attacks still maintain high success rate in the presence of various

defenses.

e Video demo is available at https://sites.google.com/view/demo-of-rovisq/home
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Proposed Attacks

Original Video Attacked Video

W)
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PSNR/Bpp  29.48 / 0.51576 29.47 / 0.9289

e Bandwidth Attack

o This prevents legitimate users from successful communication with the streaming server and induces
a high latency.

o The end-users either experience buffering when downloading high-resolution videos due to increased
bit-rate or a reduced video resolution at a fixed bit-rate.



Proposed Attacks

Attacked Video Bpp 4

Original Video

constant — stealthy
NN s\
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2517/ 0.52034 . Time
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PSNR/Bpp  29.48 / 0.51576

e Video Quality Attack

o This attack is particularly advantageous when the media server administrator is monitoring the
network bandwidth in real time.

o In this scenario, the service provider can detect anomalies in the bit-rate, but the proposed distortion
attack remains stealthy.



Proposed Attacks

d Video

Original Video

Attacke

Wi
oty

I LS
PSNR/Bpp  29.48 / 0.51576 24.22 / 0.8834

e RD Attack

o This attack combines the capabilities of the above two attacks by simultaneously targeting R and D to
cause a high latency and video distortion.
The back-end users suffer from the strongest low-quality or denial-of-service.

o If the media server lowers the video resolution to reduce network traffic, the RD attack is further
exacerbated.



Experimental Results

e Defense against Adversarial Attacks on Video Compression
o  Our attacks still maintain high success rate in the presence of various defenses, such as
adversarial training, video denoising, and JPEG coding.

Benchmark Skt o s w Defense w/o Defense
() By e, Ty Benchmark CF =
DVC [44] 29.22 0.34 31.24 0.27 ESNR(GE) Epp TSNR(E) Bep
Video Quality (Offline) 241  +0.6% 352 +0.1%
Video Quality (Online) .51 +16.4% -3.05 +19.9% DVC [44] 20 3114 0.28 31.24 0.27
Bandwidth (Offline) 012 +842% 001 +99.4% 40 29.26 02(17
Bandwidth (Online) 075  +315%  -039  +357% ) ) 20 -3.35 +0.7
RD (Offline) 288 +115% 421 +853% Video Quality (Offline) 3.14 +0 6‘72 -3.52 +0.8%
RD (Online) 241 +256% <310  +33.5% 20 2.86 +19' %
% * =L . 0
Adversarial Training Video Quality (Online) o 576 149 305 +199%
. ) 20 025  +954%
w Defense w/o Defense Bandwidth (Offline -0.01 +99.5%
Eenchx PSNR (dB) l Bpp PSNR (odB )  Bpp ( ) ‘218 '(l)jg +§2;Z> ’
r— ¢ s =1. +54.270
DVC [44] 2974 0.28 31.24 027 Bandwidth (Online) -0.39 +35.7%
Video Quality (Offline) 323 +05% 352 +0.8% ;'8 “11;’)8 "‘g;zg’ °
Video Quality (Online) -2.76 +14.3% -3.05 +19.9% . -4, +52.670
Bandwidth (Offline) 012 +648% 001  +995% RD (Offline) 40 371 +70.5% -4.21 +85.3%
Bandwidth (Online) 043 +218% 039  +357% 20 505 +31'8%
RD (Offline) 381 +568% 421 +853% RD (Onlin o v -3.10 335
RD (Online) 263 +184% 310  +335% ( ) 40 279 +28.6% +33.5%

Video Denoising JPEG Compression 49



Experimental Results

e Defense against Adversarial Attacks on Video Classification
o  Our attacks still maintain high success rate in the presence of various defenses, such as
adversarial training, video denoising, and JPEG coding.

Video Datie ACC (%) ACC ASR (%)  ASR (%) Video ASR (%) ASR (%)
Classifier w/o Defense Drop (%) w Defense w/o Defense Classiar Defense w Defense w/o Defense
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