
ReScan: A Middleware Framework for Realistic 
and Robust Black-box Web Application Scanning

Kostas Drakonakis, Sotiris Ioannidis, Jason Polakis
kostasdrk@ics.forth.gr

NDSS 2023 | 27 February - 3 March 2023



kostasdrk@ics.forth.gr

Web Application Scanners
❖ Plethora of existing black-box scanners

➢ App agnostic
➢ Variety of testing techniques & approaches
➢ Cover different flaws

❖ Extremely valuable for uncovering vulnerabilities

2



kostasdrk@ics.forth.gr

Web Application Scanners
❖ Plethora of existing black-box scanners

➢ App agnostic
➢ Variety of testing techniques & approaches
➢ Cover different flaws

❖ Extremely valuable for uncovering vulnerabilities

❖ The Web keeps evolving
➢ New features, APIs, client-side code
➢ Scanners need to keep up

3



kostasdrk@ics.forth.gr

However…
❖ Scanners suffer from core limitations

➢ Lack of full-fledged browser
➢ Ignore client-side events/state
➢ “Stateless” navigation
➢ Naive authentication methods
➢ Prone to false positives/negatives
➢ Inefficient due to testing similar pages

4



kostasdrk@ics.forth.gr

However…
❖ Scanners suffer from core limitations

➢ Lack of full-fledged browser
➢ Ignore client-side events/state
➢ “Stateless” navigation
➢ Naive authentication methods
➢ Prone to false positives/negatives
➢ Inefficient due to testing similar pages

❖ Miss on coverage & vulnerability detection

5



kostasdrk@ics.forth.gr

However…
❖ Scanners suffer from core limitations

➢ Lack of full-fledged browser
➢ Ignore client-side events/state
➢ “Stateless” navigation
➢ Naive authentication methods
➢ Prone to false positives/negatives
➢ Inefficient due to testing similar pages

❖ Miss on coverage & vulnerability detection
➢ Still useful with a plethora of valuable testing techniques

6



kostasdrk@ics.forth.gr

However…
❖ Scanners suffer from core limitations

➢ Lack of full-fledged browser
➢ Ignore client-side events/state
➢ “Stateless” navigation
➢ Naive authentication methods
➢ Prone to false positives/negatives
➢ Inefficient due to testing similar pages

❖ Miss on coverage & vulnerability detection
➢ Still useful with a plethora of valuable testing techniques

❖ Implementing a single new tool
➢ Prohibitive engineering effort
➢ Inherently can’t incorporate all past and future techniques

7



kostasdrk@ics.forth.gr

However…
❖ Scanners suffer from core limitations

➢ Lack of full-fledged browser
➢ Ignore client-side events/state
➢ “Stateless” navigation
➢ Naive authentication methods
➢ Prone to false positives/negatives
➢ Inefficient due to testing similar pages

❖ Miss on coverage & vulnerability detection
➢ Still useful with a plethora of valuable testing techniques

❖ Implementing a single new tool
➢ Prohibitive engineering effort
➢ Inherently can’t incorporate all past and future techniques

8

How can we address these core limitations,
without having to redesign everything from scratch?



kostasdrk@ics.forth.gr

Enter ReScan
❖ Scanner-agnostic middleware framework

➢ Intercepts all scanner requests
➢ Executes them through a SotA browser

❖ Transparently addresses limitations
➢ Multiple enhancement modules
➢ Employed on every scanner request

❖ Several technical challenges to overcome
➢ Careful design choices
➢ Ensure robustness

9
https://www.pngegg.com/



kostasdrk@ics.forth.gr

Enhancement techniques

10

❖ Build navigation model
➢ Links, forms, events
➢ Correctly transition through app states

❖ Event discovery
➢ Cover multiple JS events
➢ Find dynamic DOM content & requests

❖ Detect inter-state dependencies (ISD)
➢ Payloads affecting other parts of the app
➢ Useful for certain vulnerabilities, e.g., stored XSS

https://www.pngegg.com/



kostasdrk@ics.forth.gr

Enhancement techniques
❖ Authentication helper

➢ Detect credentials
➢ Dynamically infer auth oracle
➢ Re-establish sessions when needed

❖ XSS false positive/negative reduction
➢ Detect payload bearing requests
➢ Map page alerts/popups to injections

❖ API for future scanners
➢ Access to ReScan’s internal knowledge
➢ Enable/disable modules at runtime

11
https://www.pngegg.com/



kostasdrk@ics.forth.gr

Enhancement techniques
❖ Authentication helper

➢ Detect credentials
➢ Dynamically infer auth oracle
➢ Re-establish sessions when needed

❖ XSS false positive/negative reduction
➢ Detect payload bearing requests
➢ Map page alerts/popups to injections

❖ API for future scanners
➢ Access to ReScan’s internal knowledge
➢ Enable/disable modules at runtime

12
https://www.pngegg.com/

How can we transparently communicate our
findings back to the scanner? 



kostasdrk@ics.forth.gr

Middleware enhancement
❖ Utilize the existing communication channel

➢ HTTP response

❖ Discovered endpoints
➢ Transcribed as links/forms in final HTTP response

❖ Detected ISD sinks
➢ Append sink’s element including payload
➢ Pre-fill form inputs with unique tokens

❖ Authentication & app state
➢ Set-Cookie headers back to scanner

❖ Browsers may alter payload structure
➢ Append elements’ pre-rendered source

13



kostasdrk@ics.forth.gr

❖ Identify functionality-similar pages
➢ Common URL path, different parameters
➢ Compute DOM similarity
➢ Prevent scanner from learning redundant pages

URL Clustering

14
https://www.pngegg.com/



kostasdrk@ics.forth.gr

❖ Identify functionality-similar pages
➢ Common URL path, different parameters
➢ Compute DOM similarity
➢ Prevent scanner from learning redundant pages

❖ On a new request
➢ Keep track of already seen parameters
➢ Iteratively swap new values with known ones
➢ Compare swapped page with original request
➢ Generate clustering rules
➢ If rule applies, always redirect to same page

URL Clustering

15
https://www.pngegg.com/

/products.php?id=1

/products.php?id={2,3,4}



kostasdrk@ics.forth.gr

❖ Identify functionality-similar pages
➢ Common URL path, different parameters
➢ Compute DOM similarity
➢ Prevent scanner from learning redundant pages

❖ On a new request
➢ Keep track of already seen parameters
➢ Iteratively swap new values with known ones
➢ Compare swapped page with original request
➢ Generate clustering rules
➢ If rule applies, always redirect to same page

❖ Ensure consistency across clusters
❖ Account for arbitrary URL ordering

URL Clustering

16
https://www.pngegg.com/

/products.php?id=1

/products.php?id={2,3,4}



kostasdrk@ics.forth.gr

Evaluation
❖ Popular black-box scanners

➢ w3af, wapiti, ZAP, Enemy of the State [USENIX Sec ‘12]
➢ Configured to scan for XSS
➢ Authenticated scans
➢ Max scan time set to 24h

❖ Diverse application set with 10 apps
➢ Wordpress, osCommerce, PhpBB, HotCRP…
➢ Modern & older ones

❖ Ran all scanners on all apps with and without ReScan

17



kostasdrk@ics.forth.gr

Detection & Coverage

❖ Detection
➢ ReScan improves all scanners for most apps
➢ Eliminated wapiti’s and ZAP’s FPs

18



kostasdrk@ics.forth.gr

Detection & Coverage

19

+14 XSS +23 XSS +4 XSS +11 XSS

❖ Detection
➢ ReScan improves all scanners for most apps
➢ Eliminated wapiti’s and ZAP’s FPs
➢ Overall, +4 reflected, +21 stored XSS



kostasdrk@ics.forth.gr

Detection & Coverage

20

+14 XSS +23 XSS +4 XSS +11 XSS

❖ Detection
➢ ReScan improves all scanners for most apps
➢ Eliminated wapiti’s and ZAP’s FPs
➢ Overall, +4 reflected, +21 stored XSS

❖ Coverage
➢ Improved in all cases between 3% - 935%
➢ On average 168% improvement



kostasdrk@ics.forth.gr

Further evaluation
❖ Successfully detects other types of vulnerabilities

➢ Unrestricted file upload
➢ Login brute-forcing
➢ Blind SQL injection

❖ Outperforms current SotA [Black Widow - S&P ‘21]
➢ Partially addresses some of the limitations
➢ +8 reflected, +15 stored XSS
➢ +46% code coverage on average

21



kostasdrk@ics.forth.gr

Performance

22

❖ Non-negligible overhead
➢ When compared to standalone scanners
➢ Numerous techniques, full-fledged browser
➢ Each request completed in < 5 seconds on average
➢ Max scan time reached for 15 / 40 scans

❖ URL clustering improves performance
➢ ~6.7x speedup

❖ Outperforms current SotA in most cases
➢ BW reached time limit in 8/10 apps



kostasdrk@ics.forth.gr

Performance
❖ Non-negligible overhead

➢ When compared to standalone scanners
➢ Numerous techniques, full-fledged browser
➢ Each request completed in < 5 seconds on average
➢ Max scan time reached for 15 / 40 scans

❖ URL clustering improves performance
➢ ~6.7x speedup

❖ Outperforms current SotA in most cases
➢ BW reached time limit in 8/10 apps

❖ Acceptable trade-off, given the significant improvements
23



kostasdrk@ics.forth.gr

Conclusion
❖ Designed scanner-agnostic middleware framework

➢ Transparently addresses scanners’ limitations
➢ Numerous enhancement techniques
➢ Can aid existing and future scanners

❖ Comprehensive evaluation on diverse scanners and apps
➢ Facilitates vulnerability detection (XSS + more)
➢ Significantly increases code coverage
➢ Outperforms current state-of-the-art

❖ Code & apps’ docker images publicly available
➢ https://gitlab.com/kostasdrk/rescan/

24
kostasdrk@ics.forth.gr



kostasdrk@ics.forth.gr

Scanners’ limitations
❖ Only ZAP uses a real browser

❖ Only Enemy
➢ Creates a navigation model
➢ Clusters pages (based on link structure)

❖ No ISD detection + FP/FN elimination

❖ w3af + wapiti use naive authentication

❖ At least 4 aspects neglected by each 
scanner

25



kostasdrk@ics.forth.gr

Navigation model
❖ Directed graph

➢ Nodes: Unique URLs
➢ Edges: GET, FORM, EVENT, IFRAME, REDIRECT

❖ Collect all such edges from each URL

❖ Subsequent requests are mapped to their edge

❖ Recursively construct their workflow
➢ Follow parent edges until first GET and execute from there

26



kostasdrk@ics.forth.gr

Event discovery
❖ Used jAk’s lib to capture elements with events

❖ Trigger each event
➢ MutationObserver to capture new links/forms/iframes
➢ Capture requests & block them to avoid state changes

❖ BFS approach to capture nested events
➢ Event dependency chains

❖ All events and dependency chains are included in the navigation model

27



kostasdrk@ics.forth.gr

Inter-state dependencies
❖ Background worker

➢ Keep track of submitted values (ISD sources)
➢ Detect if they appear in other pages (ISD sinks)
➢ Notify browser workers of detected ISD links

❖ Browser workers on POST requests
➢ Detect parameters that may include scanner payload
➢ Fetch candidate ISD sinks for each parameter
➢ If payload appears in sink, embed it in final HTTP response

28



kostasdrk@ics.forth.gr

Authentication helper
❖ Capture first auth request and detect credentials

➢ All scanners initially submit the valid username/password

❖ Infer authentication oracle
➢ New request without cookies (unauthenticated)
➢ Check if username/email/logout/login form only appears on one of the pages

❖ Run oracle after every request
➢ In new tab to maintain initial request’s state

❖ Re-login if logged out and retry request

29



kostasdrk@ics.forth.gr

XSS FP/FN elimination
❖ Identify scanner payloads

➢ Keyword-based (alert, prompt, javascript:)
➢ Most scanners try to trigger an alert popup

❖ For any alert that occurs
➢ Map its text to detected injections
➢ Verified via code execution

❖ Effectiveness depends on underlying scanner
➢ Does not reuse payloads -> Alerts are mapped to exactly one injection; FP/FN elimination
➢ Reuses payloads -> Alerts are mapped to all injections; reduced confidence

30



kostasdrk@ics.forth.gr

Coverage

❖ Unique LoC during each scan
➢ Improved in all cases

❖ Sampled & inspected
➢ Several cases which directly led to missed vulnerabilities

31



kostasdrk@ics.forth.gr

Total scanning times

❖ Overhead can be between minutes or even several hours
➢ Depends on underlying scanner and target app

❖ In most cases, total scan time < 24 hours
32



kostasdrk@ics.forth.gr

Request processing performance

❖ Workflow and event discovery < 3 sec for most apps
❖ Fetching ISD sinks < 2 sec for 4 apps 6 - 16 sec for the rest
❖ Oracle takes < 2 sec for 99% of requests

33



kostasdrk@ics.forth.gr

DOM similarity threshold
❖ Compiled 3 sets of pages for each app

➢ 1st: different URLs & functionalities
➢ 2nd: similar URLs & functionalities (should be clustered)
➢ 3rd: similar URLs & different functionalities

❖ For each pair within each set
➢ Calculated modified normalized DOM-edit distance (mNDD)

❖ Different pages (1st, 3rd): min mNDD = 0.014
❖ Similar pages (2nd): max mNDD = 0.009

❖ Threshold = 0.009 to avoid possible FPs

34



kostasdrk@ics.forth.gr

State-of-the-art comparison
❖ Cannot handle asynchronous requests’ 

payloads

❖ Authentication
➢ No oracle
➢ Only re-logins when presented with a login form
➢ Does not retry failed edges

❖ Clustering
➢ Hard limit on number of similar pages
➢ Does not consider parameters’ values when 

clustering similar pages (FPs)

❖ Sequential execution

35


