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Machine Learning as a Service

Real-World Applications
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DL model



Accurate inference results
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Motivation and Design Goals

Server

• Privacy Preservation

Client

Security Requirements

Malicious

• Model Accuracy

• Computation Correctness
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Design Challenges

Model Accuracy
Computation

Correctness

Zero-knowledge proof Maliciously secure 2PC framework

Possible Solutions

Need complex and careful design 

PrivacyPrivacy



An important observation
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Our Key Insight

Server
Client

Privacy-preserving inference

Known Labels

Public samples

Client can know some computation results in advance 

Inference results

Expected outputs Actual outputs
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Our Key Insight

(1) Prepare public samples

(2) Duplicate each query sample

Mix-and-Check

Model Accuracy

Computation

Correctness

Client 
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Client Detects Server’s Malicious Behaviors

• Low-Quality model

• Incorrect computations for some samples 

Inconsistent results

Server

Inaccurate results

same samples same samples

public samples
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Solution: Fusion

Client

Inference results

(II) Secure Inference

Using Semi-Honest 2PC

Public samplesRequested

sample 1

Requested

sample 2

Randomly shuffled

(I) Mixed Dataset Preparation

(III) Local Effective Checks

(a) Check model accuracy

(b) Check computation correctness

Private input

DL model

Server

Mixed Dataset 
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Solution: Fusion

Client Server

A trained model

query samples𝑅

public samples𝑇

public samples
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Client Prepares a Mixed Dataset

• (1) Prepare Mixed Dataset

Mixed Dataset

Client
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Privacy-Preserving Inference Execution

• (2) Obtain Inference Results

ServerClient

Semi-honest secure inference

Inference results
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Client Checks Inference Results

• (3) Simple-but-Effective Local Checks

Model accuracy

same samples same samples

public samplesOutput consistency

Computation Correctness
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Optimal Number Selection

Given 𝑅, select appropriate 𝐵, 𝑇

Security Requirement Cost Requirement

 Detect server’s cheating  Decrease the average cost

Client
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Security Requirement

Server succeeds in cheating

(2) Consistent-but-Incorrect (1) Model Accuracy

Pr[𝐸𝑇] =

𝑅𝐵+𝑇−𝑖𝐵
𝑇

𝑅𝐵+𝑇
𝑇

Pr[𝐸𝐵] =

𝑅
𝑖

𝑖𝐵 ! 𝑅𝐵 − 𝑖𝐵 !

𝑅𝐵 !
(1) (2) 

same samples same samples
public samples
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Client Selects Numbers Ensuring Security

Cost Optimization

Search for the optimal numbers ensuring security

Security Requirements

Client

Pr𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≤ 2−𝜆 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐵,𝑇

Cost(B,T,R)=
𝑅𝐵 + 𝑇

𝑅

Pr𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = Pr 𝐸𝑇 × Pr 𝐸𝐵

satisfy



Popular related works 
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Related Works

CCS17’ MiniONN

Usenix18’ Gazelle
Usenix20’ DELPHI

CCS20’ CrypTFlow2

Usenix21’ MUSE
(MAC)

Usenix22’ SIMC
(MAC)

Usenix22’ Cheetah

CCS19’ LevioSA
(IPS compiler)

S&P20’ Cryptflow
(TEE)

S&P21’ SIRNN

Usenix21’ ABY2.0

Secret Sharing

Homomorphic Encryption + 

Garbled Circuits/Secret Sharing

NDSS15’ ABY

Threat Models

• Semi-Honest Security

• Malicious Security

Model Quality
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Performance

Table I: Comparison between Cheetah-

based Fusion and LevioSA (CCS19’)

Runtime: 48.06× faster

Communication: 30.90× less

Table II: Performance of Fusion using 

different semi-honest inference protocols
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Performance

Table IV: Performance on ResNet50

Table III: Performance of Cheetah-based Fusion and 

comparison with semi-honest inference protocols

3.5X 1.7X

35.9X

47.8X

12.5X

18.3X

0.9X

8.3X

10.9X

2.64X 1.30X slower 1.18X faster
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Conclusion

High Efficiency

• Low average overhead

• Comparable efficiency with 
semi-honest protocols

Strong Security

• Model accuracy

• Computation correctness

• Privacy preservation


