
BlockScope: Detecting and Investigating
Propagated Vulnerabilities in Forked

Blockchain Projects

Xiao Yi1, Yuzhou Fang1, Daoyuan Wu1*, Lingxiao Jiang2

https://github.com/VPRLab/BlkVulnReport

https://github.com/VPRLab/BlkVulnReport

2

Motivation: Whether Bitcoin/Ethereum
vulnerabilities propagated to their forked projects?

Init
Commit

Commit
#1

Commit
#xxx

Current
Version

Commit
#xxx+i

Current
Version

Commit
#xxx+j

Current
Version

Commit
#xxx+k

Current
Version

2

2

Motivation: Whether Bitcoin/Ethereum
vulnerabilities propagated to their forked projects?

Init
Commit

Commit
#1

Commit
#xxx

Current
Version

Commit
#xxx+i

Current
Version

Commit
#xxx+j

Current
Version

Commit
#xxx+k

Current
Version

3

2

Motivation: Whether Bitcoin/Ethereum
vulnerabilities propagated to their forked projects?

Init
Commit

Commit
#1

Commit
#xxx

Current
Version

Commit
#xxx+i

Current
Version

Commit
#xxx+j

Current
Version

Commit
#xxx+k

Current
Version

4

2

Motivation: Whether Bitcoin/Ethereum
vulnerabilities propagated to their forked projects?

Init
Commit

Commit
#1

Commit
#xxx

Current
Version

Commit
#xxx+i

Current
Version

Commit
#xxx+j

Current
Version

Commit
#xxx+k

Current
Version

5

Identified in five projects!

3

Our Tool: BlockScope
• A novel patch-based clone detection tool for propagated vulnerabilities

in forked blockchain projects.

3

Our Tool: BlockScope
• A novel patch-based clone detection tool for propagated vulnerabilities

in forked blockchain projects.

1. Leverage patch code contexts to locate only potentially relevant code

2. Adopt similarity-based code match for being immune to clone variants

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

1 bool ConnectBlock(const CBlock& block, CValidationState& state, ...,

2 CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)

3 AssertLockHeld(cs_main);

4 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

5 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

int64_t nTimeStart = GetTimeMicros();

assert(hashPrevBlock == view.GetBestBlock());

Leverage git grep to find ks in target repo

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

int64_t nTimeStart = GetTimeMicros();

assert(hashPrevBlock == view.GetBestBlock());

Leverage git grep to find ks in target repo

AssertLockHeld(cs_main);

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

if (!fJustCheck)

Determine the boundary ss and es by similarity

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

int64_t nTimeStart = GetTimeMicros();

assert(hashPrevBlock == view.GetBestBlock());

Leverage git grep to find ks in target repo

AssertLockHeld(cs_main);

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

if (!fJustCheck)

const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

Determine the boundary ss and es by similarity

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

4

Context-based Candidate Clone Search

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

int64_t nTimeStart = GetTimeMicros();

assert(hashPrevBlock == view.GetBestBlock());

Leverage git grep to find ks in target repo

AssertLockHeld(cs_main);

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

if (!fJustCheck)

const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

Determine the boundary ss and es by similarity

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o ∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :

o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.
• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,

o SIMILARITY 𝑆, 𝑇 = !
-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

S p=5 T q=3

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :

o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.
• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,

o SIMILARITY 𝑆, 𝑇 = !
-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

S p=5 T q=3

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :

o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.
• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,

o SIMILARITY 𝑆, 𝑇 = !
-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

𝒑 ≠ 𝒒 issue

S p=5 T q=3

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :
o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.

• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,
o SIMILARITY 𝑆, 𝑇 = !

-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

𝒑 ≠ 𝒒 issue

S p=5 T q=3

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :
o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.

• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,
o SIMILARITY 𝑆, 𝑇 = !

-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

𝒑 ≠ 𝒒 issue

code ordering issue

S p=5 T q=3

5

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆*, 𝑇#).

• 2. Multiply strsim(𝑆! , 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆! , 𝑇" 𝑟 !#" :
o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.

• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,
o SIMILARITY 𝑆, 𝑇 = !

-
∑*.!
- strsim(𝑆*, 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

𝒑 ≠ 𝒒 issue

code ordering issue

S p=5 T q=3

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

Hash tokenized contexts
Cannot detect Type-2

Patch-based
code clone
detection

Original Vuln Code Type-2 Clone

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3

Patch-based
code clone
detection

Original Vuln Code Type-2 Clone
Type-3 Clone

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

MVP
[Usenix’20]

VGraph
[EuroSP’20]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3 More “program analysis”

Patch-based
code clone
detection

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

MVP
[Usenix’20]

VGraph
[EuroSP’20]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3 More “program analysis”

This path: to generate better “hashes” (generic and more accurate)

Patch-based
code clone
detection

Hash-based “exact” code matching for the basic unit

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

MVP
[Usenix’20]

BlockScope

VGraph
[EuroSP’20]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3 More “program analysis”

This path: to generate better “hashes” (generic and more accurate)

Our path: do not use “hash” the basic unit
but design a better way to calculate their “similarity”

Patch-based
code clone
detection

Language
Dependent

Hash-based “exact” code matching for the basic unit

Language
Agnostic

6

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

MVP
[Usenix’20]

BlockScope
Context-based code search (to speed up)
Similarity-based code match (to cover more vulns)

VGraph
[EuroSP’20]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3 More “program analysis”

This path: to generate better “hashes” (generic and more accurate)

Our path: do not use “hash” the basic unit
but design a better way to calculate their “similarity”

Patch-based
code clone
detection

Language
Dependent

Hash-based “exact” code matching for the basic unit

Language
Agnostic

7

Dataset
• Security patches:

oWithin 5 years; cover different
vulnerability types; applicable to
most forked projects;

o32 from Bitcoin (including 4 CVEs);
o6 CVEs from Ethereum;

• Source/Target Code Repositories:

8

The Overall Accuracy and PerformanceTABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

• Accuracy:
oPrecision:

91.8% vs. 95%
oRecall: 91.8%

vs. 51.8%

• Performance:
o Bitcoin: 109.9s

vs. 189.6s
o Ethereum:

13.3s vs.
204.5s

8

The Overall Accuracy and PerformanceTABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

• Accuracy:
oPrecision:

91.8% vs. 95%
oRecall: 91.8%

vs. 51.8%

• Performance:
o Bitcoin: 109.9s

vs. 189.6s
o Ethereum:

13.3s vs.
204.5s

ReDeBug has less FPs,
but too many FNs

8

The Overall Accuracy and PerformanceTABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

• Accuracy:
oPrecision:

91.8% vs. 95%
oRecall: 91.8%

vs. 51.8%

• Performance:
oBitcoin: 109.9s

vs. 189.6s
oEthereum:

13.3s vs.
204.5s

ReDeBug has less FPs,
but too many FNs

8

The Overall Accuracy and PerformanceTABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

• Accuracy:
oPrecision:

91.8% vs. 95%
oRecall: 91.8%

vs. 51.8%

• Performance:
oBitcoin: 109.9s

vs. 189.6s
oEthereum:

13.3s vs.
204.5s

ReDeBug has less FPs,
but too many FNs

LOC significantly effects
ReDeBug’s performance

9

The Breakdown for Three Clone Types
• Type-1&3 clones occupy

95.5% of all the cases.

• BlockScope accuracy:
oType-1: 100%;
oType-2: 80%;
oType-3: 85.7%.

• ReDeBug accuracy:
oType-1: 85.7%;
oType-2: 0%;
oType-3: 26.8%.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

10

Vulnerability Report Response
• Reported 110 vulnerabilities

(101 TP + 9 FN);
o74 positive response;
oCVE-2021-37491 of Dogecoin &

CVE-2021-37492 of Ravencoin
o1 bug bounty from Binance;

o Dogecoin, Ravencoin, Dash,
Bitcoin Gold, Litecoin, and
Binance are the most active
ones;

o Bitcoin Cash, DigiByte, and
Optimism did not respond to
any of our reports.

10

Vulnerability Report Response
• Reported 110 vulnerabilities

(101 TP + 9 FN);
o74 positive response;
oCVE-2021-37491 of Dogecoin &

CVE-2021-37492 of Ravencoin
o1 bug bounty from Binance;

oDogecoin, Ravencoin, Dash,
Bitcoin Gold, Litecoin, and
Binance are the most active
ones;

o Bitcoin Cash, DigiByte, and
Optimism did not respond to
any of our reports.

10

Vulnerability Report Response
• Reported 110 vulnerabilities

(101 TP + 9 FN);
o74 positive response;
oCVE-2021-37491 of Dogecoin &

CVE-2021-37492 of Ravencoin
o1 bug bounty from Binance;

oDogecoin, Ravencoin, Dash,
Bitcoin Gold, Litecoin, and
Binance are the most active
ones;

oBitcoin Cash, DigiByte, and
Optimism did not respond to
any of our reports.

11

How do vulnerabilities propagate to the
forked projects?

12

Investigation of Propagated Vulnerabilities

• 41 cases, e.g., CVE-2022-29177, CVE-
2021-41173.

• 25 cases, e.g., CVE-2021-3401, CVE-
2020-26265, CVE-2020-26264, CVE-
2020-26260.

• 44 cases, e.g., Bitcoin PR#16512.

12

Investigation of Propagated Vulnerabilities

• 41 cases, e.g., CVE-2022-29177, CVE-
2021-41173.

• 25 cases, e.g., CVE-2021-3401, CVE-
2020-26265, CVE-2020-26264, CVE-
2020-26260.

• 44 cases, e.g., Bitcoin PR#16512.

12

Investigation of Propagated Vulnerabilities

• 41 cases, e.g., CVE-2022-29177, CVE-
2021-41173.

• 25 cases, e.g., CVE-2021-3401, CVE-
2020-26265, CVE-2020-26264, CVE-
2020-26260.

• 44 cases, e.g., Bitcoin PR#16512.

13

Our Limitation
• FP-I: 7 cases, e.g., CVE-2018-

17145, CVE-2019-15947, Bitcoin
PR#12561, Bitcoin PR#14249.

• FP-II: 2 cases, e.g., Bitcoin
PR#12561, Bitcoin PR#13808.

• FN: 9 cases, e.g., Bitcoin
PR#10345, Bitcoin PR#11568,
Bitcoin PR#13907.

13

Our Limitation
• FP-I: 7 cases, e.g., CVE-2018-

17145, CVE-2019-15947, Bitcoin
PR#12561, Bitcoin PR#14249.

• FP-II: 2 cases, e.g., Bitcoin
PR#12561, Bitcoin PR#13808.

• FN: 9 cases, e.g., Bitcoin
PR#10345, Bitcoin PR#11568,
Bitcoin PR#13907.

13

Our Limitation
• FP-I: 7 cases, e.g., CVE-2018-

17145, CVE-2019-15947, Bitcoin
PR#12561, Bitcoin PR#14249.

• FP-II: 2 cases, e.g., Bitcoin
PR#12561, Bitcoin PR#13808.

• FN: 9 cases, e.g., Bitcoin
PR#10345, Bitcoin PR#11568,
Bitcoin PR#13907.

14

How long does it take for the forked
projects to fix the propagated
vulnerabilities?

15

Determining Fixed Cases’ Delay
• Interval between the patch’s commit date in

the source project and the patch’s release
date in the target project.

• Find the commits that added the patch by
git blame:

o Added by two commits: a2714a5c & 797fef7b;
o a2714a5c is earlier, thus determined as the

“true” commit.

• Crawl the commit’s GitHub page
to find its release date.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

15

Determining Fixed Cases’ Delay
• Interval between the patch’s commit date in

the source project and the patch’s release
date in the target project.
• Find the commits that added the patch by
git blame:

o Added by two commits: a2714a5c & 797fef7b;
o a2714a5c is earlier, thus determined as the

“true” commit.

• Crawl the commit’s GitHub page
to find its release date.

TABLE II: An example of the output of git blame.
src/qt/bitcoin.cpp
202d853b 201 }
202d853b 202 }
202d853b 203
a2714a5c 204 static int qt_argc = 1;
797fef7b 205 static const char* qt_argv = "qtum-qt";
a2714a5c 206
a2714a5c 207 BitcoinApplication::BitcoinApplication(...):
a2714a5c 208 QApplication(qt_argc, const_cast<char **>(...)),
9096276e 209 coreThread(nullptr),
71e0d908 210 m_node(node),
9096276e 211 optionsModel(nullptr),

Moreover, as Searcher may return multiple candidate
contexts in the target repository, leading to multiple candidate
code, i.e., Ci 2 [C1, C2, ..., Cn]. For each Ci, we calculate
si = SIMILARITY(Ci, P), and determine its patch applying
status fvi 2 {0, 1}, where fvi = 1 (= 0) indicates Ci has
(not) applied P. Here we introduce a factor confi to measure
the confidence of fvi on Ci by confi = si� t, i.e., the greater
si exceeds t the more confident fvi is on Ci. Finally, we can
determine the status of P in the target repository by the most
confident fvi, i.e., i = argmaxj confj . If the target repository
did not apply P, we consider it a vulnerability; otherwise, we
consider the vulnerability fixed.

F. Determining Patch Delays for the Vulnerabilities Already
Patched in the Target Repositories

For the vulnerabilities already patched in the target repos-
itories, we further leverage Calculator to automatically
measure their patch delays. We define the patch delay as
the interval between the patch’s commit date in the source
project and the patch’s release date in the target project because
eventually, the release date is the actual time when a patch is
available to the blockchain node operators and end users.

Upon receiving a candidate code that is determined as
fixed, Calculator leverages git blame to retrieve the
commit that patched the code. Table II illustrate an ex-
ample output of git blame, where it shows the commit
hash (SHA) and the line number for the code statements in
Qtum’s src/qt/bitcoin.cpp file. The code from line
204 to line 208 is actually Qtum’s patch for fixing the
cloned CVE-2021-3401 [11] in its project. It was added
by two commits, a2714a5c69 and 797fef7bee, where
797fef7bee only modified line 205. Hence, we still need
to determine which commit is the true fix. In the Qtum
example, after checking both commits, we identify that line
205 in Table II was originally added by a2714a5c69 on
10 August 2019 as static const char* qt_argv =
"bitcoin-qt";, where "bitcoin-qt" is later replaced
by "qtum-qt" in 797fef7bee on 26 June 2020. As a
result, if multiple commits modify the candidate code, we
consider the earliest one is the true fix commit.

Moreover, we need to scrape the release information from
GitHub because the local git repository does not contain
such information. By analyzing a commit’s GitHub webpage,
Calculator can retrieve all of its release versions and de-
termine the earliest date when the commit was first released. In
the Qtum example, the patch commit a2714a5c69 was first
released in the version mainnet-ignition-v0.19.0 on
22 February 2020, which was delayed from the original Bitcoin
commit by 197 days.

IV. DETECTING THE VULNERABILITIES PROPAGATED TO
FORKED PROJECTS

In this section, we aim to detect the vulnerabilities that
are propagated from Bitcoin and Ethereum to their forked
blockchain projects using BlockScope. To this end, we first
benchmark the accuracy and performance of BlockScope (Sec.
IV-B) using an experimental setup introduced in Sec. IV-A. We
then present the detected vulnerabilities in Sec. IV-C. Finally,
we conduct ethical vulnerability reporting and summarize
vendors’ response/actions in Sec. IV-D.

A. Experimental Setup

To make sure that BlockScope’s vulnerability detection
results are reliable, we not only run BlockScope in our
experiment but also compare it with the open-source state-of-
the-art ReDeBug [41] using the same dataset and environment
below. Note that we also considered other clone detection tools
(e.g., [44], [46], [63], [75]) for more comparison but eventually
did not choose them for two reasons. First, MVP [75] was not
open-source and it does not support the Go language. While
VUDDY [46] released its signature generating scripts, its
most important vulnerability search engine was not available.
Indeed, we contacted the VUDDY team and confirmed that
their cloud version currently supports only one CVE in our
dataset. Second, CCFinder [44] and SourcererCC [63] are pure
code clone detection tools and are not able to perform patch-
based detection in our problem without adjustment.

Dataset. As illustrated in Fig. 2, BlockScope requires two
sets of input, the target blockchain code repositories and the
security patches of a reference blockchain (i.e., Bitcoin and
Ethereum in this paper). As a result, we collect these two
sets of data as our dataset. Specifically, for code repositories,
we select all the 11 forked projects of Bitcoin from the top
100 cryptocurrencies (based on the market capitalization on
CoinMarketCap) and five popular forked projects of Ethereum
(picked from Blockscan) as our target blockchains, as previ-
ously introduced in Sec. II. The total market capitalization
of these 16 blockchains was around 142 billion USD. To
build a reproducible dataset, we kept a local copy of the
latest version of code repositories at the time of our research
on 7 September 2021 and 6 June 2022 for Bitcoin forks
and Ethereum forks, respectively. On the other hand, for
security patches, an intuitive idea is to use the CVE (Common
Vulnerabilities and Exposures) information; however, we found
that there are only 12 CVEs about Bitcoin with explicit patch
code and eight of them are out of the recent five years. That
said, we could select only four to test if we just use the public
CVE information.

To address this problem, we select bug issues/pull requests
with notable security impacts (i.e., vulnerabilities) and their
patch commits (i.e., patches) directly from Bitcoin’s GitHub
repository according to three simple principles: (i) the patches
should be released within the recent five years since outdated
patches had been applied to Bitcoin before it gets forked;
(ii) the patches that cover different vulnerability types should
have a higher chance to be picked up so that we can evaluate
the generality of BlockScope; and (iii) the patches should be
applicable to most forked projects, i.e., not specific to one
particular Bitcoin component or one fork. As a result, we

7

Example of the output of git blame.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

15

Determining Fixed Cases’ Delay
• Interval between the patch’s commit date in

the source project and the patch’s release
date in the target project.
• Find the commits that added the patch by
git blame:
oAdded by two commits: a2714a5c & 797fef7b;
oa2714a5c is earlier, thus determined as the

“true” commit.

• Crawl the commit’s GitHub page
to find its release date.

TABLE II: An example of the output of git blame.
src/qt/bitcoin.cpp
202d853b 201 }
202d853b 202 }
202d853b 203
a2714a5c 204 static int qt_argc = 1;
797fef7b 205 static const char* qt_argv = "qtum-qt";
a2714a5c 206
a2714a5c 207 BitcoinApplication::BitcoinApplication(...):
a2714a5c 208 QApplication(qt_argc, const_cast<char **>(...)),
9096276e 209 coreThread(nullptr),
71e0d908 210 m_node(node),
9096276e 211 optionsModel(nullptr),

Moreover, as Searcher may return multiple candidate
contexts in the target repository, leading to multiple candidate
code, i.e., Ci 2 [C1, C2, ..., Cn]. For each Ci, we calculate
si = SIMILARITY(Ci, P), and determine its patch applying
status fvi 2 {0, 1}, where fvi = 1 (= 0) indicates Ci has
(not) applied P. Here we introduce a factor confi to measure
the confidence of fvi on Ci by confi = si� t, i.e., the greater
si exceeds t the more confident fvi is on Ci. Finally, we can
determine the status of P in the target repository by the most
confident fvi, i.e., i = argmaxj confj . If the target repository
did not apply P, we consider it a vulnerability; otherwise, we
consider the vulnerability fixed.

F. Determining Patch Delays for the Vulnerabilities Already
Patched in the Target Repositories

For the vulnerabilities already patched in the target repos-
itories, we further leverage Calculator to automatically
measure their patch delays. We define the patch delay as
the interval between the patch’s commit date in the source
project and the patch’s release date in the target project because
eventually, the release date is the actual time when a patch is
available to the blockchain node operators and end users.

Upon receiving a candidate code that is determined as
fixed, Calculator leverages git blame to retrieve the
commit that patched the code. Table II illustrate an ex-
ample output of git blame, where it shows the commit
hash (SHA) and the line number for the code statements in
Qtum’s src/qt/bitcoin.cpp file. The code from line
204 to line 208 is actually Qtum’s patch for fixing the
cloned CVE-2021-3401 [11] in its project. It was added
by two commits, a2714a5c69 and 797fef7bee, where
797fef7bee only modified line 205. Hence, we still need
to determine which commit is the true fix. In the Qtum
example, after checking both commits, we identify that line
205 in Table II was originally added by a2714a5c69 on
10 August 2019 as static const char* qt_argv =
"bitcoin-qt";, where "bitcoin-qt" is later replaced
by "qtum-qt" in 797fef7bee on 26 June 2020. As a
result, if multiple commits modify the candidate code, we
consider the earliest one is the true fix commit.

Moreover, we need to scrape the release information from
GitHub because the local git repository does not contain
such information. By analyzing a commit’s GitHub webpage,
Calculator can retrieve all of its release versions and de-
termine the earliest date when the commit was first released. In
the Qtum example, the patch commit a2714a5c69 was first
released in the version mainnet-ignition-v0.19.0 on
22 February 2020, which was delayed from the original Bitcoin
commit by 197 days.

IV. DETECTING THE VULNERABILITIES PROPAGATED TO
FORKED PROJECTS

In this section, we aim to detect the vulnerabilities that
are propagated from Bitcoin and Ethereum to their forked
blockchain projects using BlockScope. To this end, we first
benchmark the accuracy and performance of BlockScope (Sec.
IV-B) using an experimental setup introduced in Sec. IV-A. We
then present the detected vulnerabilities in Sec. IV-C. Finally,
we conduct ethical vulnerability reporting and summarize
vendors’ response/actions in Sec. IV-D.

A. Experimental Setup

To make sure that BlockScope’s vulnerability detection
results are reliable, we not only run BlockScope in our
experiment but also compare it with the open-source state-of-
the-art ReDeBug [41] using the same dataset and environment
below. Note that we also considered other clone detection tools
(e.g., [44], [46], [63], [75]) for more comparison but eventually
did not choose them for two reasons. First, MVP [75] was not
open-source and it does not support the Go language. While
VUDDY [46] released its signature generating scripts, its
most important vulnerability search engine was not available.
Indeed, we contacted the VUDDY team and confirmed that
their cloud version currently supports only one CVE in our
dataset. Second, CCFinder [44] and SourcererCC [63] are pure
code clone detection tools and are not able to perform patch-
based detection in our problem without adjustment.

Dataset. As illustrated in Fig. 2, BlockScope requires two
sets of input, the target blockchain code repositories and the
security patches of a reference blockchain (i.e., Bitcoin and
Ethereum in this paper). As a result, we collect these two
sets of data as our dataset. Specifically, for code repositories,
we select all the 11 forked projects of Bitcoin from the top
100 cryptocurrencies (based on the market capitalization on
CoinMarketCap) and five popular forked projects of Ethereum
(picked from Blockscan) as our target blockchains, as previ-
ously introduced in Sec. II. The total market capitalization
of these 16 blockchains was around 142 billion USD. To
build a reproducible dataset, we kept a local copy of the
latest version of code repositories at the time of our research
on 7 September 2021 and 6 June 2022 for Bitcoin forks
and Ethereum forks, respectively. On the other hand, for
security patches, an intuitive idea is to use the CVE (Common
Vulnerabilities and Exposures) information; however, we found
that there are only 12 CVEs about Bitcoin with explicit patch
code and eight of them are out of the recent five years. That
said, we could select only four to test if we just use the public
CVE information.

To address this problem, we select bug issues/pull requests
with notable security impacts (i.e., vulnerabilities) and their
patch commits (i.e., patches) directly from Bitcoin’s GitHub
repository according to three simple principles: (i) the patches
should be released within the recent five years since outdated
patches had been applied to Bitcoin before it gets forked;
(ii) the patches that cover different vulnerability types should
have a higher chance to be picked up so that we can evaluate
the generality of BlockScope; and (iii) the patches should be
applicable to most forked projects, i.e., not specific to one
particular Bitcoin component or one fork. As a result, we

7

Example of the output of git blame.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

15

Determining Fixed Cases’ Delay
• Interval between the patch’s commit date in

the source project and the patch’s release
date in the target project.
• Find the commits that added the patch by
git blame:
oAdded by two commits: a2714a5c & 797fef7b;
oa2714a5c is earlier, thus determined as the

“true” commit.

• Crawl the commit’s GitHub page
to find its release date.

TABLE II: An example of the output of git blame.
src/qt/bitcoin.cpp
202d853b 201 }
202d853b 202 }
202d853b 203
a2714a5c 204 static int qt_argc = 1;
797fef7b 205 static const char* qt_argv = "qtum-qt";
a2714a5c 206
a2714a5c 207 BitcoinApplication::BitcoinApplication(...):
a2714a5c 208 QApplication(qt_argc, const_cast<char **>(...)),
9096276e 209 coreThread(nullptr),
71e0d908 210 m_node(node),
9096276e 211 optionsModel(nullptr),

Moreover, as Searcher may return multiple candidate
contexts in the target repository, leading to multiple candidate
code, i.e., Ci 2 [C1, C2, ..., Cn]. For each Ci, we calculate
si = SIMILARITY(Ci, P), and determine its patch applying
status fvi 2 {0, 1}, where fvi = 1 (= 0) indicates Ci has
(not) applied P. Here we introduce a factor confi to measure
the confidence of fvi on Ci by confi = si� t, i.e., the greater
si exceeds t the more confident fvi is on Ci. Finally, we can
determine the status of P in the target repository by the most
confident fvi, i.e., i = argmaxj confj . If the target repository
did not apply P, we consider it a vulnerability; otherwise, we
consider the vulnerability fixed.

F. Determining Patch Delays for the Vulnerabilities Already
Patched in the Target Repositories

For the vulnerabilities already patched in the target repos-
itories, we further leverage Calculator to automatically
measure their patch delays. We define the patch delay as
the interval between the patch’s commit date in the source
project and the patch’s release date in the target project because
eventually, the release date is the actual time when a patch is
available to the blockchain node operators and end users.

Upon receiving a candidate code that is determined as
fixed, Calculator leverages git blame to retrieve the
commit that patched the code. Table II illustrate an ex-
ample output of git blame, where it shows the commit
hash (SHA) and the line number for the code statements in
Qtum’s src/qt/bitcoin.cpp file. The code from line
204 to line 208 is actually Qtum’s patch for fixing the
cloned CVE-2021-3401 [11] in its project. It was added
by two commits, a2714a5c69 and 797fef7bee, where
797fef7bee only modified line 205. Hence, we still need
to determine which commit is the true fix. In the Qtum
example, after checking both commits, we identify that line
205 in Table II was originally added by a2714a5c69 on
10 August 2019 as static const char* qt_argv =
"bitcoin-qt";, where "bitcoin-qt" is later replaced
by "qtum-qt" in 797fef7bee on 26 June 2020. As a
result, if multiple commits modify the candidate code, we
consider the earliest one is the true fix commit.

Moreover, we need to scrape the release information from
GitHub because the local git repository does not contain
such information. By analyzing a commit’s GitHub webpage,
Calculator can retrieve all of its release versions and de-
termine the earliest date when the commit was first released. In
the Qtum example, the patch commit a2714a5c69 was first
released in the version mainnet-ignition-v0.19.0 on
22 February 2020, which was delayed from the original Bitcoin
commit by 197 days.

IV. DETECTING THE VULNERABILITIES PROPAGATED TO
FORKED PROJECTS

In this section, we aim to detect the vulnerabilities that
are propagated from Bitcoin and Ethereum to their forked
blockchain projects using BlockScope. To this end, we first
benchmark the accuracy and performance of BlockScope (Sec.
IV-B) using an experimental setup introduced in Sec. IV-A. We
then present the detected vulnerabilities in Sec. IV-C. Finally,
we conduct ethical vulnerability reporting and summarize
vendors’ response/actions in Sec. IV-D.

A. Experimental Setup

To make sure that BlockScope’s vulnerability detection
results are reliable, we not only run BlockScope in our
experiment but also compare it with the open-source state-of-
the-art ReDeBug [41] using the same dataset and environment
below. Note that we also considered other clone detection tools
(e.g., [44], [46], [63], [75]) for more comparison but eventually
did not choose them for two reasons. First, MVP [75] was not
open-source and it does not support the Go language. While
VUDDY [46] released its signature generating scripts, its
most important vulnerability search engine was not available.
Indeed, we contacted the VUDDY team and confirmed that
their cloud version currently supports only one CVE in our
dataset. Second, CCFinder [44] and SourcererCC [63] are pure
code clone detection tools and are not able to perform patch-
based detection in our problem without adjustment.

Dataset. As illustrated in Fig. 2, BlockScope requires two
sets of input, the target blockchain code repositories and the
security patches of a reference blockchain (i.e., Bitcoin and
Ethereum in this paper). As a result, we collect these two
sets of data as our dataset. Specifically, for code repositories,
we select all the 11 forked projects of Bitcoin from the top
100 cryptocurrencies (based on the market capitalization on
CoinMarketCap) and five popular forked projects of Ethereum
(picked from Blockscan) as our target blockchains, as previ-
ously introduced in Sec. II. The total market capitalization
of these 16 blockchains was around 142 billion USD. To
build a reproducible dataset, we kept a local copy of the
latest version of code repositories at the time of our research
on 7 September 2021 and 6 June 2022 for Bitcoin forks
and Ethereum forks, respectively. On the other hand, for
security patches, an intuitive idea is to use the CVE (Common
Vulnerabilities and Exposures) information; however, we found
that there are only 12 CVEs about Bitcoin with explicit patch
code and eight of them are out of the recent five years. That
said, we could select only four to test if we just use the public
CVE information.

To address this problem, we select bug issues/pull requests
with notable security impacts (i.e., vulnerabilities) and their
patch commits (i.e., patches) directly from Bitcoin’s GitHub
repository according to three simple principles: (i) the patches
should be released within the recent five years since outdated
patches had been applied to Bitcoin before it gets forked;
(ii) the patches that cover different vulnerability types should
have a higher chance to be picked up so that we can evaluate
the generality of BlockScope; and (iii) the patches should be
applicable to most forked projects, i.e., not specific to one
particular Bitcoin component or one fork. As a result, we

7

Example of the output of git blame.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

16

Patch Delay Analysis

• Only DigiByte can catch up with Bitcoin’s schedule.
• Dash is particularly slow.
• Ethereum’s forks generally perform better than Bitcoin’s forks.

17

Thank You!
• BlockScope: For the effective and efficient detection of multiple types

of cloned vulnerabilities.

• Detected 101 true vulnerabilities in 16 Bitcoin and Ethereum forked
projects; 2 new CVEs of Dogecoin and Ravencoin; a bug bounty from
Binance.

• Conducted a deep investigation on vulnerability propagation and
patching processes.

Questions?

