

SoundLock

A Novel User Authentication Scheme for VR Devices Using Auditory-Pupillary Response

Huadi Zhu, Mingyan Xiao, Demoria Sherman, and Ming Li

The University of Texas at Arlington

Motivation

Development of VR market
\$28 billion in 2022
\$87 billion in 2030

[1] https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market

• VR applications

E-commerce \triangleright

Education \triangleright

\lhd Entertainment

 \lhd Healthcare

 \lhd Social media

Motivation

- Sensitive information is stored in and accessible through VR devices
 - Personal media
 - Bank information
 - 📥 Health status

.

User authentication on VR is crucial

• VR applications

Related Work

Current solutions

State-of-the-arts

Background: Auditory-Pupillary Response

Auditory-pupillary response mechanism

SoundLock: Basic Idea

Measurement Study

- Setup
 - 32 subjects × 20 audio tracks

- Observations
 - Distinguishable responses across subjects
- Distinguishable responses across stimuli

• Consistent responses within a subject

Auditory-pupillary response: ideal biomarker

SoundLock: Workflow

Increasing System Entropy

Increasing System Entropy

Performance indicator: Kullback-Leibler divergence (KLD)

$$D_{KL} = \sum_{x \in X} P(x) \log\left(\frac{P(x)}{Q(x)}\right)$$

KLD: non-uniform distribution \rightarrow truncate stimuli

Optimization Approach

Problem formulation

$$\max_{m,t} D_{KL}(P||Q)$$

s.t. $\sum_{i=1}^{N} (t_i + \tau) \times m_i \le T_0$
 $m_i \in \{0,1\}$

Correlation between variables

Non-linearity

- Two-stage heuristic optimization algorithm
 - Stage 1 approximately optimize *m*
 - Stage 2 optimize t via AGD

Experiment Setup

Prototype apparatus

- VR headset: HTC VIVE Pro
- Eye tracker: Pupil Labs add-on
- Server: Exxact desktop
 - Processor: Intel Core i7 CPU
 - GPU: 2x NVIDIA GeForce RTX
 - Operating system: Windows 10
- Software platform: Unity

- Recruitment
 - 44 participants from UT Arlington
- Procedure
 - Enrollment
 - Authentication
 - Impersonation attack
 - Consistency tests
 - User study

Overall Performance

• Comparison with state-of-the-arts

Approach	FAR (%)	FRR (%)	F1-score	Auth time
PIN* [2]	-	>1.14	-	2.54-2.95
Drawing pattern* [2]	-	<mark>>5</mark> .19	-	2.82-3.87
OcuLock [6]	3.55	3.55	0.983	<u>≤</u> 10
SkullConduct [5]	6.90	6.90	-	≤23
Brain Password [3]	2.50	2.50	0.955	≈4.80
ElectricAuth [7]	0.83	2.00	_	≈1.30
SoundLock (this work)	0.76	0.91	0.984	<u>≤</u> 7

Best authentication performance

Entropy Analysis

• Comparison with existing generic authentication systems

Work	Authentication method	Entropy (bits)	
Wang et al. [8]	Password	20 - 23	
Wang et al. ^[9]	PIN $(4\text{-digit}^{[1]}, 6\text{-digit}^{[2]})$	$8.41^{[1]}, 13.21^{[2]}$	
Sae-Bae et al. $[10]$	Keystroke	3.48 - 4.62	
Youmaran et al. [11]	Iris	278 - 288	
Takahashi et al. [12]	Fingerprint	18.6	
Adler et al. [13]	Face	37.0 - 55.6	
SoundLock (this work)	Pupillometry	81	

Performance-Usability Tradeoff

• Error rate vs authentication time

Error rate vs number of stimuli

Optimal tradeoff

Performance Under Various Scenarios

• Impact of user motion

• Impact of ambient noise

Eye movement: highest impact on FRR Minimal impact on FAR: no security degradation White noise: highest impact Consistent in real-world scenarios

User Study

- Closed questionnaire design
- User feedback

Well perceived by users in both studies

Improvement in post-study: exceeds expectations

User Study

- Open questionnaire
 - What's your overall experience with SoundLock?
 - "It was a fun experience!" (P9)
 - *"The idea of using pupil for authentication is smart."* (P35)
 - *"I don't need to do anything* and the authentication is automatically done." (P40)
 - Do you have any concerns or did you notice any potential issues of SoundLock?
 - "Will twins or siblings be able to hack into each other's profile?" (P35)
 - *"Will my pupillary response be used to infer what I'm thinking?"* (P38)
 - Do you have any suggestions to improve SoundLock in the future?
 - "I think the system can be extended to smartphones, which will prove a valuable addition. The speaker can emit a sound and the eye image can be captured by the camera." (P1)

Conclusion

- ✓ We investigate auditory-pupillary response, a novel reflexive physiological biometric, for user authentication on VR devices
- ✓ We formulate an optimization problem and propose a two-stage heuristic algorithm to efficiently optimize the accuracy-usability tradeoff
- ✓ We prove via extensive in-field experiments that SoundLock outperforms state-of-theart solutions and is well received among users

THANK YOU

Check our SoundLock paper

Find out about our MobiSect group

