
Copy-on-Flip: Hardening ECC Memory
Against Rowhammer Attacks

Andrea Di Dio1, Koen Koning2, Herbert Bos1, Cristiano Giuffrida1

1

1Vrije Universiteit Amsterdam
2Intel 



TL;DR

2

● Rowhammer is still an unresolved problem



TL;DR

● We need to protect existing systems

3

● Rowhammer is still an unresolved problem



TL;DR

● We need to protect existing systems

● Meet Copy-on-Flip:

4

● Rowhammer is still an unresolved problem



TL;DR

● We need to protect existing systems

● Meet Copy-on-Flip:

○ ECC to detect ongoing Rowhammer attacks

5

● Rowhammer is still an unresolved problem



TL;DR

● We need to protect existing systems

● Meet Copy-on-Flip:

○ ECC to detect ongoing Rowhammer attacks

○ Transparent page migration and offlining for vulnerable pages

6

● Rowhammer is still an unresolved problem



TL;DR

● We need to protect existing systems

● Meet Copy-on-Flip:

○ ECC to detect ongoing Rowhammer attacks

○ Transparent page migration and offlining for vulnerable pages

○ Low overhead with >95% attack surface reduction (including kernel memory)

7

● Rowhammer is still an unresolved problem



Background - Rowhammer Attacks

8



Background - Rowhammer Attacks

9



Background - Rowhammer Attacks

10



Background - Rowhammer Attacks

11



Background - Rowhammer Attacks

12



Background - Rowhammer Attacks

13



Background - Rowhammer Attacks

14



Background - Rowhammer Defenses

15



Background - Rowhammer Defenses

16



Background - Rowhammer Defenses

17

🕓🔨



Background - Rowhammer & ECC

18

● Single Error Correction, Double Error Detection (SECDED)



Background - Rowhammer & ECC

● ECC was thought to be a strong defense against Rowhammer

19

● Single Error Correction, Double Error Detection (SECDED)



Background - Rowhammer & ECC

● ECC was thought to be a strong defense against Rowhammer

● One-bit-at-a-time templating

20

● Single Error Correction, Double Error Detection (SECDED)



Background - Rowhammer & ECC

● ECC was thought to be a strong defense against Rowhammer

● One-bit-at-a-time templating

● ≥ 3 bit flips to evade ECC

21

● Single Error Correction, Double Error Detection (SECDED)



Copy-on-Flip - Why?

22

● SW Defenses are impractical

○ High overhead

○ Unrealistic assumptions



Copy-on-Flip - Why?

● HW Defenses may end Rowhammer in the future

23

● SW Defenses are impractical

○ High overhead

○ Unrealistic assumptions



Copy-on-Flip - Why?

● HW Defenses may end Rowhammer in the future

○ Slow to deploy 🚧

24

● SW Defenses are impractical

○ High overhead

○ Unrealistic assumptions



Copy-on-Flip - Why?

● HW Defenses may end Rowhammer in the future

○ Slow to deploy 🚧
● We need to protect existing systems now 🚨

25

● SW Defenses are impractical

○ High overhead

○ Unrealistic assumptions



Copy-on-Flip - What?

26

● Target: Systems equipped with ECC memory



Copy-on-Flip - What?

● Stop ECC-aware Rowhammer at the templating phase of the attack

27

● Target: Systems equipped with ECC memory



Copy-on-Flip - What?

● Stop ECC-aware Rowhammer at the templating phase of the attack

● Simple design to protect vulnerable memory at runtime

28

● Target: Systems equipped with ECC memory



Copy-on-Flip - What?

● Stop ECC-aware Rowhammer at the templating phase of the attack

● Simple design to protect vulnerable memory at runtime

29

● Target: Systems equipped with ECC memory



Copy-on-Flip - What?

● Stop ECC-aware Rowhammer at the templating phase of the attack

● Simple design to protect vulnerable memory at runtime

30

● Target: Systems equipped with ECC memory



Copy-on-Flip - What?

● Stop ECC-aware Rowhammer at the templating phase of the attack

● Simple design to protect vulnerable memory at runtime

31

● Target: Systems equipped with ECC memory



Copy-on-Flip - Template Detector

32



Copy-on-Flip - Template Detector

33



Copy-on-Flip - Template Detector

34



Copy-on-Flip - Page Protector

35



What is Vulnerable Memory?

36



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

37



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

38



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

39



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

40



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

○ Page Cache

41



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

○ Page Cache

○ Slab

42



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

○ Page Cache

○ Slab

○ vmalloc-like

43



What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

○ Page Cache

○ Slab

○ vmalloc-like

○ Kernel stacks

44



Challenge - Kernel Pages

45

mm/memory-failure.c 

● Existing page offlining implementations in Linux ignore kernel pages



Copy-on-Flip - Page Protector

● Transparent page migration and offlining

46



Copy-on-Flip - Page Protector

● Transparent page migration and offlining

47



Copy-on-Flip - Page Protector

● Transparent page migration and offlining

48



Copy-on-Flip - Page Protector

● Transparent page migration and offlining

49



Copy-on-Flip - Page Protector

● Transparent page migration and offlining

50



Evaluation - Security

51

● HW Error Injection to test defense



Evaluation - Security

52

● HW Error Injection to test defense

● >95% of memory is movable



Evaluation - Security

53

● HW Error Injection to test defense

● >95% of memory is movable

● System-wide protection



Evaluation - Security

54

● HW Error Injection to test defense

● >95% of memory is movable

● System-wide protection

● No assumptions on Rowhammer variant



Evaluation - Performance

55

● SPEC CPU2017 geometric mean overhead: 0.2%

● LMBench geometric mean overhead: 1.9%

● Kraken on Google Chrome geometric mean overhead: 1.1%



Evaluation - Performance

56

● SPEC CPU2017 geometric mean overhead: 0.2%

● LMBench geometric mean overhead: 1.9%

● Kraken on Google Chrome geometric mean overhead: 1.1%

● Negligible memory overhead under normal conditions



Evaluation - Nginx

57

~10% median overhead



Conclusion

● Modern systems are still vulnerable to Rowhammer

● Copy-on-Flip design + open-source implementation

● Low overhead and high attack surface reduction

58



More in The Paper

59

@hammertux @vu5ec 

● Linux implementation details

● More evaluation results

● Discussion on other OSes

● Paper: https://download.vusec.net/papers/cof_ndss23.pdf

● Code: https://github.com/vusec/Copy-on-Flip

https://download.vusec.net/papers/cof_ndss23.pdf


Evaluation - Residual Attack Surface

● Non-movable pages

○ DMA

○ Direct Linear Mapping

60

● >95% pages are now protected in Copy-on-Flip



Evaluation - Performance Under Attack

61


