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● We need to protect existing systems

● Meet Copy-on-Flip:

○ ECC to detect ongoing Rowhammer attacks

○ Transparent page migration and offlining for vulnerable pages

○ Low overhead with >95% attack surface reduction (including kernel memory)
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Background - Rowhammer & ECC

● ECC was thought to be a strong defense against Rowhammer

● One-bit-at-a-time templating

● ≥ 3 bit flips to evade ECC
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Copy-on-Flip - Why?

● HW Defenses may end Rowhammer in the future

○ Slow to deploy 🚧
● We need to protect existing systems now 🚨
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● SW Defenses are impractical

○ High overhead

○ Unrealistic assumptions
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What is Vulnerable Memory?

● Pages attacker can allocate/use for templating

○ Userspace pages

● Pages allocated by the kernel on behalf of the attacker

○ Page Tables

○ Page Cache

○ Slab

○ vmalloc-like

○ Kernel stacks
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Challenge - Kernel Pages
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mm/memory-failure.c 

● Existing page offlining implementations in Linux ignore kernel pages
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● HW Error Injection to test defense

● >95% of memory is movable

● System-wide protection

● No assumptions on Rowhammer variant
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● SPEC CPU2017 geometric mean overhead: 0.2%

● LMBench geometric mean overhead: 1.9%

● Kraken on Google Chrome geometric mean overhead: 1.1%

● Negligible memory overhead under normal conditions



Evaluation - Nginx
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~10% median overhead



Conclusion

● Modern systems are still vulnerable to Rowhammer

● Copy-on-Flip design + open-source implementation

● Low overhead and high attack surface reduction
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More in The Paper
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@hammertux @vu5ec 

● Linux implementation details

● More evaluation results

● Discussion on other OSes

● Paper: https://download.vusec.net/papers/cof_ndss23.pdf

● Code: https://github.com/vusec/Copy-on-Flip

https://download.vusec.net/papers/cof_ndss23.pdf


Evaluation - Residual Attack Surface

● Non-movable pages

○ DMA

○ Direct Linear Mapping
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● >95% pages are now protected in Copy-on-Flip



Evaluation - Performance Under Attack
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