

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Breaking and Fixing Virtual Channels: Domino Attack and Donner

Lukas Aumayr¹, Pedro Moreno-Sanchez², Aniket Kate³, Matteo Maffei^{1,4}

¹TU Wien, ²IMDEA Software Institute, ³Purdue University, ⁴Christian Doppler Laboratory Blockchain Technologies for the Internet of Things

DURDUE UNIVERSITY® **CDL-BOT**

What's in store?

1. Existing Virtual Channel solutions & Domino attack:

- New attack on Virtual Channels

What's in store?

1. Existing Virtual Channel solutions & Domino attack:

2. Donner virtual channels:

Generic solution for apps over multiple hops

Fair, unlimited lifetime and fee model

New attack on Virtual Channels

Background

Blockchain: records every transaction

- Blockchain: records every transaction
- Global consensus: everyone checks the whole blockchain

- Blockchain: records every transaction
- Global consensus: everyone checks the whole blockchain

Bitcoin's transaction rate: ~10 tx/sec Visa's transaction rate: ~10K tx/sec

- Blockchain: records every transaction
- Global consensus: everyone checks the whole blockchain

Bitcoin's transaction rate: ~10 tx/sec Visa's transaction rate: ~10K tx/sec

Exchange transactions locally off-chain, Blockchain for disputes

Payment channels

Payment channels

Funded on-chain

Payment channels

Arbitrarily many payments off-chain

Arbitrarily many payments off-chain

Arbitrarily many payments off-chain

Payment channels

Only 2 transactions on-chain

Payment channels

Paying to anybody?

Infeasible to open a channel with everybody

Instead form Network!

Instead form Network!

Multi-hop payments (MHPs)

Instead form Network!

[1] J. Poon and T. Dryja, "The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments," *2016*[2] M. Christodorescu et al., "Universal Payment Channels: An Interoperability Platform for Digital Currencies," 2021
[3] M. Zamini et al., "Cross-Border Payments for Central Bank Digital Currencies via Universal Payment Channels," 2021

Lightning Network (LN) [1]

- 134M \$ locked
- 16k nodes
- 76k channels
- VISA research [2], CBDC [3]

Limitations of MHPs

Only for payments

What we would like

Limitations of MHPs

Only for payments

Each payment routed via intermediaries

What we would like

Limitations of MHPs

Only for payments

Each payment routed via intermediaries

What we would like

Limitations of MHPs

Only for payments

Each payment routed via intermediaries

[4] T. Dryja,"Discreet Log Contracts," <u>https://adiabat.github.io/dlc.pdf</u>

What we would like

DLCs [4], games, betting, etc.

Limitations of MHPs

Only for payments

Each payment routed via intermediaries

[4] T. Dryja,"Discreet Log Contracts," <u>https://adiabat.github.io/dlc.pdf</u>

What we would like

DLCs [4], games, betting, etc.

Involve intermediaries only for setup/closure

Limitations of MHPs

Only for payments

Each payment routed via intermediaries

[4] T. Dryja,"Discreet Log Contracts," <u>https://adiabat.github.io/dlc.pdf</u>

What we would like

Virtual Channels & the Domino Attack

Virtual channels idea

- Bypass intermediaries
- Fund off-chain on top of existing channels

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2019:

Dziembowski et al. (Eurocrypt'19) *Multi-Party Virtual State Channels* - Turing-complete scripting

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2019:

Dziembowski et al. (Eurocrypt'19)*Multi-Party Virtual State Channels*- Turing-complete scripting

2020:

Aumayr et al. (IEEE S&P'21) *Bitcoin-Compatible Virtual Channels* - only 1 intermediary

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2019:

Dziembowski et al. (Eurocrypt'19) *Multi-Party Virtual State Channels* - Turing-complete scripting

2020:

Aumayr et al. (IEEE S&P'21) *Bitcoin-Compatible Virtual Channels* - only 1 intermediary

2020:

Jourenko, Larangeira, and Tanaka (CANS'20) *Lightweight Virtual Payment Channels*built on limited lifetime channels

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19)

Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2019:

Dziembowski et al. (Eurocrypt'19) *Multi-Party Virtual State Channels* - Turing-complete scripting

2020:

Aumayr et al. (IEEE S&P'21) *Bitcoin-Compatible Virtual Channels* - only 1 intermediary

2020:

Jourenko, Larangeira, and Tanaka (CANS'20)*Lightweight Virtual Payment Channels*built on limited lifetime channels

2021:

Kiayias, and Litos (preprint) *Elmo: Recursive Virtual Payment Channels for Bitcoin*- Requires unsupported opcode

2017:

Dziembowski, Eckey, Faust, and Malinowski (IEEE S&P'19) Perun: Virtual Payment Hubs over Cryptocurrencies

- only 1 intermediary
- Turing-complete scripting

2018:

Dziembowski, Faust, and Hostáková (ACM CCS'18) General State Channel Networks

- Turing-complete scripting

2019:

Dziembowski et al. (Eurocrypt'19) *Multi-Party Virtual State Channels* - Turing-complete scripting

2020:

Aumayr et al. (IEEE S&P'21) *Bitcoin-Compatible Virtual Channels* - only 1 intermediary

2020:

Jourenko, Larangeira, and Tanaka (CANS'20) *Lightweight Virtual Payment Channels*built on limited lifetime channels

2021:

Kiayias, and Litos (preprint) *Elmo: Recursive Virtual Payment Channels for Bitcoin*- Requires unsupported opcode

Rooted design

Example: Jourenko, Larangeira, and Tanaka, "Lightweight Virtual Payment Channels," 2021

Rooted design

Example: Jourenko, Larangeira, and Tanaka, "Lightweight Virtual Payment Channels," 2021

Rooted design

Example: Jourenko, Larangeira, and Tanaka, "Lightweight Virtual Payment Channels," 2021

Two observations

Two observations

Alice (or Eve) has to have a way to forcefully ensure her balance on-chain.

Dave initiates sequence to put VC_{AD} balance on-chain.

VCAE

Donner

Recall reasons for Domino attack

(1) VC funded from underlying channels

(2) Endpoints need way to enforce balance

Donner idea

(1) VC funded from underlying channels

(2) Endpoints need way to enforce balance to be sure not to lose money

Virtual Channel

Let me fund the VC from a tx FT that does not exist

Funding transaction of the virtual channel

Virtual Channel

Let me fund the VC from a tx FT that does not exist

Funding transaction of the virtual channel

Virtual Channel

Let me fund the VC from a tx FT that does not exist

Let's pretend it exists and use the VC

Funding transaction of the virtual channel

Virtual Channel

- Let me fund the VC from a tx FT that does not exist
- Let's pretend it exists and use the VC
- set up a collateral payment to you:

Funding transaction of the virtual channel

Virtual Channel

- Let me fund the VC from a tx FT that does not exist
- Let's pretend it exists and use the VC
- set up a collateral payment to you:
- FT on-chain: I (Alice) get money back

Funding transaction of the virtual channel

Virtual Channel

- Let me fund the VC from a tx FT that does not exist
- Let's pretend it exists and use the VC
- set up a collateral payment to you:
- FT on-chain: I (Alice) get money back
- Else: You (Dave) get money after timeout

- Dave is safe

Virtual Channel

Rationale at does not exist

Posting FT, means that the VC is now funded on-chain -> PC lateral payment to you:

Either gets money from payment

Or can claim from transformed PC

Virtual Channel

Payment is successful after timeout T

Before T, Alice can refund payment

Donner (simplified)

[5] L. Aumayr, P. Moreno-Sanchez, A. Kate and M. Maffei, "Blitz: Secure Multi-Hop Payments Without Two-Phase Commits," USENIX Security, 2021

Donner (simplified)

[5] L. Aumayr, P. Moreno-Sanchez, A. Kate and M. Maffei, "Blitz: Secure Multi-Hop Payments Without Two-Phase Commits," USENIX Security, 2021

Donner (simplified)

Close VC

Close VC

Close VC

Extending lifetime (indefinitely)

- Extending lifetime (indefinitely)
- Fair fee model

- Extending lifetime (indefinitely)
- Fair fee model

Performance evaluation (constant overhead)

verhead)

- Extending lifetime (indefinitely)
- Fair fee model

- Performance evaluation (constant overhead)
- Formalized security & privacy in UC Framework

Domino attack

Donner virtual channels

Generic solution for apps over multiple hops

Fair, unlimited lifetime and fee model

Take home

Devastating attack on existing VC schemes

eprint.iacr.org/2021/855

lukas.aumayr@tuwien.ac.at

