
An OS-agnostic Approach

to Memory Forensics

Andrea Oliveri¹, Matteo Dell’Amico², Davide Balzarotti¹

@IridiumXOR

oliveri@eurecom.fr

¹EURECOM ²University of Genoa

https://twitter.com/IridiumXOR
mailto:oliveri@eurecom.fr

Memory forensics 101: OS Profiles

2/16

● Non-trivial forensics tools use profiles.

Memory forensics 101: OS Profiles

2/16

● Non-trivial forensics tools use profiles.

● A profile:

○ describes locations, field, and links of kernel data structures.

Memory forensics 101: OS Profiles

2/16

● Non-trivial forensics tools use profiles.

● A profile:

○ describes locations, field, and links of kernel data structures.

○ is based on a deep knowledge of the OS internals.

Memory forensics 101: OS Profiles

2/16

● Non-trivial forensics tools use profiles.

● A profile:

○ describes locations, field, and links of kernel data structures.

○ is based on a deep knowledge of the OS internals.

● Different OS releases and kernel configurations require

different profiles.

The “easy” scenario…

3/16

An analyst acquires a memory dump of an “ordinary” system which:

The “easy” scenario…

3/16

An analyst acquires a memory dump of an “ordinary” system which:

○ is based on Intel or ARM CPUs

The “easy” scenario…

3/16

An analyst acquires a memory dump of an “ordinary” system which:

○ is based on Intel or ARM CPUs

○ runs an OS that is supported by forensics tools

The “easy” scenario…

3/16

An analyst acquires a memory dump of an “ordinary” system which:

○ is based on Intel or ARM CPUs

○ runs an OS that is supported by forensics tools

○ requires a profile that is available to the analyst

The “easy” scenario…

3/16

An analyst acquires a memory dump of an “ordinary” system which:

○ is based on Intel or ARM CPUs

○ runs an OS that is supported by forensics tools

○ requires a profile that is available to the analyst

=> Existing tools can be used to extract artifacts

…and the hard one.

4/16

An analyst acquires a memory dump of a generic device which:

○ is based on specialized CPU architectures (industrial devices, printers…)

…and the hard one.

4/16

An analyst acquires a memory dump of a generic device which:

○ is based on specialized CPU architectures (industrial devices, printers…)

○ uses a completely unknown/uncommon OS (network devices, IoT devices…)

…and the hard one.

4/16

An analyst acquires a memory dump of a generic device which:

○ is based on specialized CPU architectures (industrial devices, printers…)

○ uses a completely unknown/uncommon OS (network devices, IoT devices…)

○ cannot be rehosted or instrumented to take multiple snapshots.

…and the hard one.

4/16

An analyst acquires a memory dump of a generic device which:

○ is based on specialized CPU architectures (industrial devices, printers…)

○ uses a completely unknown/uncommon OS (network devices, IoT devices…)

○ cannot be rehosted or instrumented to take multiple snapshots.

 => No compatible forensics tools => No structured analysis possible.

 ¯_(ツ)_/¯

Memory forensics, differently

5/16

● Profiles-based approaches focus on OSs implementations

Memory forensics, differently

5/16

● Profiles-based approaches focus on OSs implementations

● Data structures have universal topological constraints.

Memory forensics, differently

5/16

● Profiles-based approaches focus on OSs implementations

● Data structures have universal topological constraints.

=> CORE IDEA: Identify data structures without any knowledge of the OS

 using topological constraints.

Step 1: pointers and global variables

6/16

● Extract pointers in an OS-agnostic way.

Step 1: pointers and global variables

6/16

● Extract pointers in an OS-agnostic way.

○ Use MMU constraints*

*A.Oliveri et D.Balzarotti “In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics”

Step 1: pointers and global variables

6/16

● Extract pointers in an OS-agnostic way.

○ Use MMU constraints*

○ Kernel address space as pointer validator.

*A.Oliveri et D.Balzarotti “In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics”

Step 1: pointers and global variables

6/16

● Extract pointers in an OS-agnostic way.

○ Use MMU constraints*

○ Kernel address space as pointer validator.

● Static analysis tool to extract global variables.

*A.Oliveri et D.Balzarotti “In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics”

Step 2: pointers chains

7/16

Step 2: pointers chains

7/16

n
i+1

 = *n
i

Step 2: pointers chains

7/16

p
i
 = *p

i+1
+ 𝞪

Step 2: pointers chains

7/16

Step 2: pointers chains

7/16

Step 2: pointers chains

7/16

Step 2: pointers chains

7/16

Step 3: nodes size

8/16

● Skeleton pointers are at the

same offset in each struct node.

Step 3: nodes size

8/16

● Skeleton pointers are at the

same offset in each struct node.

○ Data located at the same offset must

have the same type.

Step 3: nodes size

8/16

● Skeleton pointers are at the

same offset in each struct node.

○ Data located at the same offset must

have the same type.

● => Extend nodes by including fields

containing the same data type.

Step 4: results filtering

● Seed: a piece of forensics information known a priori or easily carved

○ a name of a process or a kernel module

○ an IP address

○ a file name etc.

9/16

Step 4: results filtering

● Seed: a piece of forensics information known a priori or easily carved

○ a name of a process or a kernel module

○ an IP address

○ a file name etc.

● Used as anchors to extract forensic relevant information

9/16

Fossil

10/16

● Proof-of-concept in Python

Fossil

10/16

● Proof-of-concept in Python

● It extracts:

○ linked lists

○ doubly-linked lists

○ binary trees

○ arrays of pointers to structures

○ dereference of linked nodes

Fossil

10/16

● Proof-of-concept in Python

● It extracts:

○ linked lists

○ doubly-linked lists

○ binary trees

○ arrays of pointers to structures

○ dereference of linked nodes

● It uses strings as seeds:

○ immediately recognizable by an analyst

○ often present in fundamental forensics data structures.

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

○ ..kernel architectures

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

○ ..kernel architectures

○ ..programming language

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

○ ..kernel architectures

○ ..programming language

○ ..license

H: hybrid, m: micro, M: monolithic, R: real-time

Experiments

11/16

● 14 different OSs on VMs with 4GB of RAM.

● Different..

○ ..CPU architecture

○ ..OS type

○ ..kernel architectures

○ ..programming language

○ ..license

● Static analysis tool: Ghidra

H: hybrid, m: micro, M: monolithic, R: real-time

Experiment 1: process enumeration

12/16

Goal: Extract the names of all processes, starting from two known ones

Experiment 1: process enumeration

12/16

Goal: Extract the names of all processes, starting from two known ones

Experiment 1: process enumeration

12/16

Goal: Extract the names of all processes, starting from two known ones

Experiment 1: process enumeration

12/16

Goal: Extract the names of all processes, starting from two known ones

Experiment 2: modules, pools and fs enumeration

13/16

Goal: Extract other data structures, starting from two known seeds

Experiment 2: modules, pools and fs enumeration

13/16

Goal: Extract other data structures, starting from two known seeds

Experiment 2: modules, pools and fs enumeration

13/16

Goal: Extract other data structures, starting from two known seeds

Experiment 3: blackbox scenario

14/16

Goal: Recover data structures without seeds

Experiment 3: blackbox scenario

14/16

Goal: Recover data structures without seeds

=> Highlights:

○ 50% in TOP5

Experiment 3: blackbox scenario

14/16

Goal: Recover data structures without seeds

=> Highlights:

○ 50% in TOP5

○ ~80% in TOP20

Profile- vs. topological- based forensics tools

15/16

✅ Blackbox approach.✅ Fine tuned analysis.

Topological based toolsProfile based tools

Profile- vs. topological- based forensics tools

15/16

✅ Blackbox approach.

✅ Independent from the OS.

✅ Fine tuned analysis.

❌ Require to support the OS.

Topological based toolsProfile based tools

Profile- vs. topological- based forensics tools

15/16

✅ Blackbox approach.

✅ Independent from the OS.

❌ High flexibility: cannot
locate complex/custom structures.

✅ Fine tuned analysis.

❌ Require to support the OS.

✅ High specificity: extract data
structures containing no seed.

Topological based toolsProfile based tools

Questions?

16/16

From a raw dump to kernel data structures

Extra 1

1. Extract pointers and global

variables.

2. Reconstruct structures uses

topological constraints

3. Estimate structs size.

4. Results filtering.

