
VulHawk: Cross-architecture Vulnerabi l i ty Detect ion
with Entropy-based Binary Code Search

NDSS 2023
Zhenhao Luo , Pengfei Wang, Baosheng Wang, Yong Tang,

Wei Xie , Xu Zhou, Danjun L iu , Kai Lu

National Univers i ty of Defense Technology

Contact :zh. luo@nudt.edu.cn

1. Background

2.

3.

4.

5.

CONTENTS

Motivation

Design

Evaluations

Conclusion

• Code reuse is widespread in software development.
• Third-party libraries are reused without secuity audit.
• A single vulnerability in the open-source code may spread

across thousands of software.

1.Background

• Code reuse is widespread in software development.
• Third-party libraries are reused without secuity audit.
• A single vulnerability in the open-source code may spread

across thousands of software.

• With the wide deployment of the IoT, the harms of code
reuse are magnified.

1.Background

• IoT firmware images and software:
• Firmware and software are usually only available in binaries.

• No function names.
• No symbol information

• Vulnerabilities from the same source code may differ in
various binary files.

• Binary code search becomes an active research for
seeking vulnerabilities hidden in firmware and
software.

1.Background

• Binary Code Search:
• Find similar or homologous binary functions.

• Given a binary file, the binary code search compares its functions
with all functions in the vulnerability repository based on function
similarity.

1.Background

...
sub_12364
sub_125A0
sub_12670
sub_1270C

...

libcurl.so

static int alloc_addbyter(int output, FILE *data)
{
 struct asprintf *infop=(struct asprintf *)data;
 unsigned char outc = (unsigned char)output;

 if(!infop->buffer) {
 infop->buffer = malloc(32);
 if(!infop->buffer) {
 infop->fail = 1;
 return -1; /* fail */

Linked to source code:

Function Name: alloc_addbyter

CVE Number: CVE-2016-8618

• However
• Firmware and software are compiled with various compilation

settings.
• This makes functions from the same source code may differ

in binary format.
For example:

1.Background

base64_encode_alloc (...){
 size_t outlen = 1 + BASE64_LENGTH (inlen);
 if (inlen > outlen){
 *out = NULL;
 return 0;
 }
 *out = malloc (outlen);
 if (!*out) return outlen;
 base64_encode (in, inlen, *out, outlen);
 return outlen - 1;
}

PUSH
MOV
ADD
LDR
UMULL
MOV
MOV
ADD
CMP
MOVHI
STRHI
BLS

{R4-R8,LR}
R6, R2
R4, R1, #2
R3, 0xAAAAAAAB
R2, R4, R3, R4
R4, R4,LSR#1
R4, R4,LSL#2
R8, R4, #1
R1, R8
R4, #0
R4, [R6]
loc_1208C

push
push
push
push
push
mov
lea
mov
mul
mov
add
and

r15
r14
r13
r12
rbx
r12, rdx
rax, [rsi+2]
rcx, 0AAAAAAAAAAAAAAABh
rcx
rbx, rdx
rbx, rdx
rbx, 0FFFFFFFFFFFFFFFCh

addiu
sw
sw
move
li
sw
sw
sw
sw
lw
addiu
li

$sp, -0x28
$ra, 0x20+var_s4($sp)
$fp, 0x20+var_s0($sp)
$fp,$sp
$gp, 0x4260D0
$gp, 0x20+var_10($sp)
$a0, 0x20+arg_0($fp)
$a1, 0x20+arg_4($fp)
$a2, 0x20+arg_8($fp)
$v0, 0x20+arg_4($fp)
$v1,$v0, 2
$v0, 0xAAAAAAAB...

Coreutils base64.c ARM, GCC, O1 x86, Clang, O3 MIPS, GCC, O0

• Challenge 1:
• Require binary code search methods robust across ISAs.

• Different registers
• Different opcodes

• Mono-architecture methods are not suitable
• e.g., Asm2Vec (S&P 2019), DeepBinDiff (NDSS 2020), PalmTree (CCS 2021).

• Out-of-vocabulary (OOV) issues, e.g.,
• SAFE (DIMVA 2019) uses a normalization.

• Still many OOV issues
• InnerEYE (NDSS 2019) uses a neural machine translation.

• When unseen ISA binary file comes, they become weak.

2.Motivation

• Challenge 2:
• Binaries are compiled with various compilation settings.

• Different compilers (e.g., Clang and GCC).
• Different optimization levels (e.g., O0, O1, O2, O3, Os, Ofast)
• Different architectures (e.g., x86, arm, and mips).

File environment: the combination of {compiler, architecture, optimization level}.

x86
arm
mips

...

Clang
GCC

...

O0
O1
O2
O3
Os

Ofast

72 file environments
x86-Clang-O1

mips-GCC-O2

arm-Clang-Os

x86-GCC-O3

......

2.Motivation

2,556 combined
scenarios

take any two

• Challenge 2:
• Binaries are compiled with various compilation settings.

x86
arm
mips

...

Clang
GCC

...

O0
O1
O2
O3
Os

Ofast

72 file environments
x86-Clang-O1

mips-GCC-O2

arm-Clang-Os

x86-GCC-O3

......

2.Motivation

2,556 combined
scenarios

take any two

• Trex, Gemini, and jTrans try to use a single deep learning model to
build a robust model for this complex problem.
• Robust against one or several specific scenarios
• Robust against 2,556 scenarios

possible
complicated

3.Design

• To solve these Challenges, we propose a cross-architecture
binary code search approach named VulHawk:
• Intermediate representation function model (IRFM)
• Entropy-based adapter
• Progressive search strategy

Challenge 1
Challenge 2

3.Design

• Intermediate Representation Function Model (IRFM)
• Purpose: generate function semantic embeddings.

• Microcode Generation
• Instruction Simplification
• Language Model
• GCN layer

3.Design

• Intermediate Representation Function Model (IRFM)
• Microcode Generation:

x86

x86

mips

arm

train

evaluate

model

• Lift binary code to an architecture-
agnostic IR (Microcode)

• Microcode groups any instructions
from different ISAs into 73 opcodes
and 16 types of operands.

• This can mitigate the impacts of
ins t ruc t ion type d i f fe rences .
Challenge 1

• It allows our model to be trained
f ro m o n e I S A a n d t o s e a r c h
functions in multiple ISAs.

3.Design

• Intermediate Representation Function Model (IRFM)
• Instruction Simplification:

• Consider the used EFLAGS.
• EFLAGS are assigned by instructions, which control the basic block conditional jumps.

• Prune redundant instructions and preserve important semantics

Redundant instructions:
1. occupy the limited input positions

2. reduce the weight of the main semantics

3. increase the difference of similar code

3.Design

• Intermediate Representation Function Model (IRFM)
• Language Model

• Purpose: Generate basic block embeddings.
• RoBERTa model

• To better generate the semantics of the OOV instructions: Challenge 1
• preserve opcodes
• convert OOV operands into their root-operand tokens

...
“read error”

“invalid input”

“written by %s\n”

0xfffffffe

...

[mop_S]

Corpus

* [mop_S] represents strings

“Written by %s, %s, %s,\nand %s.\n”
OOV operands:

[mop_S]

Language Model

“read error”

“read error”

3.Design

• Intermediate Representation Function Model (IRFM)
• GCN layer

• Purpose: Generate function embeddings.
• GCN model
• Intergrate CFG structure and baisc block embeddings

• We consider a CFG as a graph:
• basic block node
• jump directed edge

• Aggregate neighbor embeddings
• Graph pooling

3.Design

• Entropy-based adapter
• Divide-and-conquer strategy
• Entropy-based Binary Analysis
• Entropy-based Adapter layer

Challenge 2

3.Design

• Entropy-based adapter
• Divide-and-conquer strategy

Matching similar functions in the embedding space:

Existing methods try to use a single deep learning model to build a robust
model for the similarity calculation problem with 2,556 scenarios.

e.g., the differences between O0 and O3 optimizations and the differences
between GCC and Clang compilers are different.

3.Design

• Entropy-based adapter
• Divide-and-conquer strategy

1. Split the mixed embedding space
in to multiple sub-spaces.

3. Divide the similarity problem among
72 file environments with 2,556 scenarios
into 71 sub-problems.

2. Select an intermediate environment .V

4. Use adapters to transfer embeddings from
different file environments into the same file
environment for similarity calculation.V

3.Design

• Entropy-based adapter
• Divide-and-conquer strategy

1. Split the mixed embedding space
in to multiple sub-spaces.

2. Select an intermediate environment .

3. Divide the similarity problem among
72 file environments with 2,556 scenarios
into 71 sub-problems.

4. Use adapters to transfer embeddings from
different file environments into the same file
environment for similarity calculation.V

V

3.Design

• Entropy-based adapter
• Entropy-based Binary Analysis

• Purpose: Identify the file environments.
• Information-theoretic perspective: the more complex, the higher the entropy

• Entropy stream
• ResNet

libcurl find psftpmtools

O
0-

Cl
an

g-
x8

6

O
1-

G
CC

-a
rm

O
3-

Cl
an

g-
x8

6
binary file

input

modelentropy

File Environments:
O3-Clang-x86

3.Design

• Entropy-based adapter
• Entropy-based Adapter layer

• Purpose: Transfer function embeddings from different file environments into the
same intermediate file environment to alleviate the differences caused by
different file environments.

• Adapter: ResNet model

V

Similar Functions

3.Design

• Progressive search strategy
• Motivation: function embeddings are coarse-grained, and fine-grained

matching is time-consuming.
• Two-step strategy

• Function Embedding Search
• Euclidean distance similarity

• Similarity Calibration
• Basic block embeddings
• Strings
• Imported functions
• Function similarity

4.Evaluations

• Benchmarks:
• 10 popular projects
• 596,099 binary functions
• 7 tasks

• Baselines:
• PalmTree, SAFE, Asm2Vec, Asteria, Trex, BinDiff, GMN
• and

• VulHawk: the original VulHawk.
• VulHawk-ES: replaces the entropy-based adapter with neural

networks and does not use the similarity calibration.
• VulHawk-S: VulHawk without the similarity calibration

4.Evaluations

• Research questions
• RQ1: Given two binary functions, can VulHawk determine whether

they are similar?
• RQ2: Can VulHawk be used for searching one function in a large

function repository?
• RQ3: Can VulHawk identify how many functions are similar from

two binaries?
• RQ4: Can VulHawk detect 1-day vulnerabilities in the real world?

4.Evaluations

• Results of one-to-one comparison
Given two functions from various file environments, the models determine their similarity

• The AUCs of VulHawk are higher than other baselines.
• In the cross-architecture task, VulHawk achieves the highest AUC.

4.Evaluations

• Answer to RQ1
• VulHawk determines the similarity of two binary functions with

high performance, and ranks the first in 7 tasks of one-to-one
comparison.

4.Evaluations

• Research questions
• RQ1: Given two binary functions, can VulHawk determine whether

they are similar?
• RQ2: Can VulHawk be used for searching one function in a large

function repository?
• RQ3: Can VulHawk identify how many functions are similar from

two binaries?
• RQ4: Can VulHawk detect 1-day vulnerabilities in the real world?

4.Evaluations

• Results of one-to-many search
Given a function, the models retrieve top-K candidate functions from the repository

(1:100).
• VulHawk outperforms the other baselines and achieves the best

recall@1 of 0.935 in the XO task and 0.879 in the XC+XO+XA task.

4.Evaluations

• Answer to RQ2
• VulHawk can retrieve the best candidates accurately in a large

function repository.

4.Evaluations

• Research questions
• RQ1: Given two binary functions, can VulHawk determine whether

they are similar?
• RQ2: Can VulHawk be used for searching one function in a large

function repository?
• RQ3: Can VulHawk identify how many functions are similar from

two binaries?
• RQ4: Can VulHawk detect 1-day vulnerabilities in the real world?

4.Evaluations

• Results of many-to-many matching
• Given two binaries, the models give how many functions are similar.

• VulHawk outperforms the other baselines, and its probability distributions of
recall and precision are more concentrated.

4.Evaluations

• Answer to RQ3
• VulHawk can be used to match similar functions between two

binaries, and it outperforms the state-of-the-art methods in many-
to-many matching.

4.Evaluations

• Research questions
• RQ1: Given two binary functions, can VulHawk determine whether

they are similar?
• RQ2: Can VulHawk be used for searching one function in a large

function repository?
• RQ3: Can VulHawk identify how many functions are similar from

two binaries?
• RQ4: Can VulHawk detect 1-day vulnerabilities in the real world?

4.Evaluations

• Results of 1-day Vulnerability Detection from Firmware
• The repository contains vulnerable functions and their patched

functions of 12 relevant CVEs.
• The ground truth includes 93 related vulnerable functions and 119

related patched functions.

False Positive Analysis
Results of Vulnerability Detection

4.Evaluations

• Answer to RQ4
• VulHawk can distinguish vulnerable functions and their patched

functions and detect 1-day vulnerabilities with high performance
over the baselines in the real world.

4.Evaluations

• Evaluation of file environment identification
• Faster
• More accurate
• More stable

4.Evaluations

• Evaluation of file environment identification
• Architectures
• File sizes
• File types

5.Conclution

• We propose VulHawk: cross-architecture binary code
search for vulnerability detection
• Propose an IFRM to resolve Challenge 1.
• Use a divide-and-conquer strategy and Entropy-based adapters

to resolve Challenge 2.
• Propose a progressive search strategy to boost the performance

and reduce false positives.
• We implement prototype VulHawk.
• The evaluation shows the performance of VulHawk.

Q & A
Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang,

Wei Xie, Xu Zhou, Danjun Liu, Kai Lu

National University of Defense Technology

Contact:zh.luo@nudt.edu.cn

