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• Widespread of smart devices equipped with microphone
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Eavesdropping with Smart Devices

• Developers are committed for privacy protection



• Still an unsolved problem

• Third-party operating systems

• Malicious fake applications

• Uncontrolled legal recordings

• Hidden Recorders

• Need to physically block voice eavesdroppers

• Makes the voice privacy controllable to the users.
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Eavesdropping with Smart Devices
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• Application scenario • Design goals

• Effectiveness

• Successfully mislead human ears

• Successfully mislead automatic-
speech-recognition tools

• Robustness

• Could not be removed by noise 
reduction methods

• User-friendly

• Should not disturb users

September 3, 2024 Zhejiang University 4

Problem Setup
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Existing Methods to Jam Microphone

• Electromagnetic interference-based jamming

• Pros: No disturbance to users

• Cons: Limited coverage & Affect other devices

• Adversarial example-based jamming

• Pros: No need for special hardware

• Cons: No effect to human ear& generalization ability

• Ultrasound-based jamming

• Pros: No disturbance to users & Reasonable coverage



• Nonlinearity in microphone will cause self-demodulation of input signals.

• Zhang et al. (2017) inject inaudible voice commands to microphone via ultrasound[13]
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Principle of Ultrasound-Based Microphone Jamming

• Nonlinearity in microphone

Input: 𝒔(𝒕)
Ideal output: 𝐀𝒔(𝒕)

Actual output: 𝒊=𝟏
∞ 𝑨𝒊𝒔

𝒊 𝒕 ≈ 𝑨𝟏𝒔 𝒕 + 𝑨𝟐𝒔
𝟐(𝒕)

Pre-amplifier LPF A/D ConverterDiaphragm 
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• Nonlinearity in microphone will cause self-demodulation of input signals.

• Zhang et al. (2017) inject inaudible voice commands to microphone via ultrasound[13]

September 3, 2024 Zhejiang University 7

Principle of Ultrasound-Based Microphone Jamming

• Inject audible noise 𝑛 𝑡 with inaudible ultrasound

𝒏 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕) 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

𝑨𝒏 𝒕 + 𝒄
(From 𝒔^𝟐 (𝒕))
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1. High demand for noise energy vs. Limited transmission energy 
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Challenges of Jamming Microphone

SNR < -5 to achieve a WER higher 
than 40% 

Audible interference generated from 
transmitter’s nonlinearity
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2. Target speech recognition tools (human and ASR) have strong denoising ablility

• Common noises with limited energy will be easily removed
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Challenges of Jamming Microphone

• Cocktail party effect[4] in human ear

+

Target 

Noise

Human brain can easily focus on the target 
speech in a noisy environment



2. Target speech recognition tools (human and ASR) have strong denoising ablility

• Common noises with limited energy will be easily removed
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Challenges of Jamming Microphone

• Noise reduction methods in ASR

Speech Enhancement Speech Separation

+

Speech 

Noise
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Speech 1
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2. Target speech recognition tools (human and ASR) have strong denoising ablility

• Common noises with limited energy will be easily removed
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Challenges of Jamming Microphone

• Both methods rely on the differences between the noise and the speech
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• Energetic masking: Covering • Informational Masking: Disturbing
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Jamming Strategy: Energetic v.s. Informational
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• Characteristics

Pros: No need for prior knowledge 

Cons: High energy requirement & Easily to remove

Origin Word: desk

/ desk /Phonogram:

Inject / ɪ / / de ɪ sk / desk? disk?

• Characteristics

Pros: Low energy requirement & Hard to remove

Cons: Needs prior knowledge



• Prior knowledge for jamming human speech

• Signal structure: a series of phonemes

• Frequency domain properties: User dependent

• Fundamental frequency (F0)

• Timbre

• Time domain properties : Varying and uncertain

Main idea: Inject phonemes similar to the target speech to disturb it
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Informational Masking for Human Speech Jamming



• Noise structure
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Phoneme-Based Jamming Noise Design

Phoneme Data

Vowels

Consonants

𝑆1

𝑆2

𝑆3

Phoneme-Based

Noise

Random

Speed

Speed * 1.1

Random Gap

Noise Series Function

Ⅰ: Accelerated continuous vowels Inject enough phoneme per unit time

Ⅱ: Vowels with random speed and gap Narrow down the difference in speaking rate

Ⅲ: Continuous consonants Increase the diversity of the noise
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System Workflow

User Registration Data Augmentation

Noise GenerationJamming

• User Registration

• Get the user’s voice features

• Data Augmentation

• Get enough data for noise generation

• Noise Generation

• Get the noise

• Jamming

• Inject the noise to microphone
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User Registration

• Purpose: Obtain enough phoneme data with similar timbre as the user.

• Extracting from the user’s speech is time consuming, and so not practical

• Extract user’s voice feature from short registration audios and match speech data 
from public corpus

Phoneme Data
Encoder[5]
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Data Augmentation

• Increase the amount of phonemes while retaining similarity with original data

• Method: Fine-tune the emotional-related speech properties[6].
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Data Augmentation

• Increase the amount of phonemes while retaining similarity with original data

• Method: Fine-tune the emotional-related speech properties[6].
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• Lower-sideband modulation to achieve higher transmission energy 
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Noise Transmission

Conventional Modulation

𝑠 𝑡 = √2𝑛 𝑡 cos(2𝜋𝑓𝑐𝑡)

Single-sideband Modulation

𝑠 𝑡 = 𝑛 𝑡 cos 2𝜋𝑓𝑐𝑡 +  𝑛 𝑡 sin(2𝜋𝑓𝑐𝑡)

Audible Signal:

𝑓𝑓𝑐

Spectrum:

|𝑛2 𝑡 | = 2|
1

2
(𝑛2 𝑡 +  𝑛(𝑡))|

𝑓

𝐿𝑜𝑤𝑒𝑟 𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑

𝑓𝑐

User Study
Results:



• Pre-compensation to reduce distortion during transmission 
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Noise Transmission
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• Estimate ℎ1 𝑡 and ℎ2 𝑡 , pre-compensate 𝑠(𝑡) with ℎ1 𝑡 ⊛ ℎ2
−1(𝑡)
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System Overview
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System & Hardware

Laptop

(Signal Generator)

Transmitter 
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• Speech recognition tools

• 4 Commercial ASR tools

• 2 Open-Source ASR tools

• Human recognition

• Datasets

• LibriSpeech[7]  for most experiments

• TIMIT[8] for training targeted ASRs

• Harvard Sentences[9] for human 
recognition

• Evaluate aspects

• Effectiveness

• Robustness

• Scenarios

• Digital domain

• Real-world jamming

• Case study: A common office

September 3, 2024 Zhejiang University 23

Evaluation: Experimental Setting
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Evaluation: Effectiveness

• Digital domain

• 27000 words for each ASR

• Compared with [0, 8] kHz 
bandlimited white noise.

• Real-world jamming

• 70 hours data
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Evaluation: Effectiveness

• Comparisions with existing works

• Two previous works and one commercial 
device.

• With the presence of noise reduction 
methods

• Real-world end-to-end scenario
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• Speech enhancement method[10]

• Makes the distrubed speech harder
to be recognized 
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Evaluation: Robustness

• Speech Separation[11] • Specialized ASR
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• Setting • Results
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Evluation: Case Study
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Thank You！
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