Machine Unlearning of Features and Labels

<u>Alexander Warnecke</u>¹, Lukas Pirch¹, Christian Wressnegger², Konrad Rieck¹

¹Technische Universität Berlin ²Karlsruhe Institute of Technology

メロト メタト メミト メミト 一毛

 $2Q$

Machine Learning

K ロ X K @ X K 할 X X 할 X : 할 X Y Q Q @

Machine Unlearning

▶ Algorithms to remove information from ML models

- ▶ Necessary to fulfill privacy policies like GDPR or CCPA
- ▶ So far, removal of entire datapoints

Machine Unlearning

▶ Algorithms to remove information from ML models

- ▶ Necessary to fulfill privacy policies like GDPR or CCPA
- ▶ So far, removal of entire data points

▶ We extend the concept of Unlearning to Features and Labels

イロト イ押 トイヨ トイヨ トー

 QQ

▶ Input given by model and its parameters θ^*

Framework for unlearning: $\theta = \theta^* + \mathcal{U}(Z, \tilde{Z})$

- \blacktriangleright Z contains the datapoints to be fixed, $z = (x, y)$
- \triangleright \tilde{Z} contains the corrected datapoints $\tilde{z} = (x + \delta_x, y + \delta_y)$

K ロ X K @ X K 할 X K 할 X → 할 X Y Q Q Q

▶ Input given by model and its parameters θ^*

Framework for unlearning: $\theta = \theta^* + \mathcal{U}(Z, \tilde{Z})$

- \blacktriangleright *Z* contains the datapoints to be fixed, $z = (x, y)$
- \triangleright \tilde{Z} contains the corrected datapoints $\tilde{z} = (x + \delta_x, y + \delta_y)$

KOD KAR KED KED E YOUN

▶ Difference in gradients of loss used as basis

$$
\Delta(Z,\tilde{Z}) = \sum_{\tilde{z}\in\tilde{Z}} \ell(\tilde{z},\theta^*) - \sum_{z\in Z} \nabla \ell(z,\theta^*)
$$

- ▶ Input given by model and its parameters θ^*
- **Framework for unlearning:** $\theta = \theta^* + \mathcal{U}(Z, \tilde{Z})$
	- \blacktriangleright Z contains the datapoints to be fixed, $z = (x, y)$
	- \triangleright \tilde{Z} contains the corrected datapoints $\tilde{z} = (x + \delta_x, y + \delta_y)$
- ▶ Difference in gradients of loss used as basis

$$
\Delta(Z,\tilde{Z}) = \sum_{\tilde{z}\in\tilde{Z}} \ell(\tilde{z},\theta^*) - \sum_{z\in Z} \nabla \ell(z,\theta^*)
$$

 \blacktriangleright $\mathcal{U}(Z, \tilde{Z}) = -\tau \Delta(Z, \tilde{Z})$ (First-Order)

- ▶ Input given by model and its parameters θ^*
- **Framework for unlearning:** $\theta = \theta^* + \mathcal{U}(Z, \tilde{Z})$
	- \blacktriangleright Z contains the datapoints to be fixed, $z = (x, y)$
	- \triangleright \tilde{Z} contains the corrected datapoints $\tilde{z} = (x + \delta_x, y + \delta_y)$
- \blacktriangleright Difference in gradients of loss used as basis

$$
\Delta(Z,\tilde{Z}) = \sum_{\tilde{z}\in\tilde{Z}} \ell(\tilde{z},\theta^*) - \sum_{z\in Z} \nabla \ell(z,\theta^*)
$$

 \blacktriangleright $\mathcal{U}(Z, \tilde{Z}) = -\tau \Delta(Z, \tilde{Z})$ (First-Order) \blacktriangleright $\mathcal{U}(Z, \tilde{Z}) = -H_{\theta^*}^{-1}$ (Second-Order)

▶ How can we guarantee that information has been removed?

イロト (個) (差) (差) (差) の Q Q

- ▶ How can we guarantee that information has been removed?
- ▶ Guarantee that unlearning is indistinguishable from retraining
	- ▶ Add random noise to parameters
	- \blacktriangleright Bound the difference between retraining and unlearning

KOD KAR KED KED E YOUN

$$
e^{-\epsilon} \le \frac{P\left(\text{"Model after unlearning"}\right)}{P\left(\text{"Retrained model"}\right)} \le e^{\epsilon}
$$

- ▶ How can we guarantee that information has been removed?
- ▶ Guarantee that unlearning is indistinguishable from retraining
	- ▶ Add random noise to parameters
	- Bound the difference between retraining and unlearning

$$
e^{-\epsilon} \le \frac{P\left(\text{"Model after unlearning"}\right)}{P\left(\text{"Retrained model"}\right)} \le e^{\epsilon}
$$

 \blacktriangleright Inspired by the concept of differential privacy (DP)

- ▶ How can we guarantee that information has been removed?
- \triangleright Guarantee that unlearning is indistinguishable from retraining
	- ▶ Add random noise to parameters
	- \blacktriangleright Bound the difference between retraining and unlearning

$$
e^{-\epsilon} \le \frac{P\left(\text{"Model after unlearning"}\right)}{P\left(\text{"Retrained model"}\right)} \le e^{\epsilon}
$$

- \blacktriangleright Inspired by the concept of differential privacy (DP)
- ▶ Theorem
	- ▶ Both update strategies are certified for convex loss functions with bounded derivatives.

 \blacktriangleright We propose three criteria for evaluation

K ロ X K @ X K 할 X X 할 X : 할 X Y Q Q @

 \blacktriangleright We propose three criteria for evaluation

▶ Efficacy

▶ We require measure that information has been removed

K ロ X K @ X K 할 X X 할 X : 할 X Y Q Q @

- \blacktriangleright We propose three criteria for evaluation
- ▶ Efficacy
	- \blacktriangleright We require measure that information has been removed
- ▶ Fidelity
	- ▶ Classification performance should be close to the original model

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

- \blacktriangleright We propose three criteria for evaluation
- ▶ Efficacy
	- \blacktriangleright We require measure that information has been removed
- \blacktriangleright Fidelity
	- \blacktriangleright Classification performance should be close to the original model

KORK EXTERNE MORE

- ▶ Efficiency
	- \blacktriangleright The Unlearning algorithm must be faster than retraining

- \blacktriangleright We propose three criteria for evaluation
- ▶ Efficacy
	- ▶ We require measure that information has been removed
- \blacktriangleright Fidelity
	- \blacktriangleright Classification performance should be close to the original model
- ▶ Efficiency
	- \blacktriangleright The Unlearning algorithm must be faster than retraining
- ▶ All criteria must hold at the same time! We don't need
	- \blacktriangleright Fast algorithms with low fidelity or efficacy
	- \blacktriangleright Algorithms with high fidelity or efficacy that are slow

Case Study: Generative Language Models

▶ Learning Model

- ▶ Character based language model based on LSTM
- ▶ Trained on the novel "Alice in wonderland"
- \blacktriangleright Insertion of a canary sentence to induce memorization¹
- ▶ "'My telephone number is 0123456789', said Alice."

¹The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks, Usenix Security, 2019**KORK EXTERNE MORE**

Case Study: Generative Language Models

▶ Learning Model

- ▶ Character based language model based on LSTM
- ▶ Trained on the novel "Alice in wonderland"
- \blacktriangleright Insertion of a canary sentence to induce memorization¹
- ▶ "'My telephone number is 0123456789', said Alice."
- \blacktriangleright Task
	- ▶ Unlearn the memorized number by changing features and labels
	- ▶ "'My telephone number is not here', said Alice."

¹The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks, Usenix Security, 2019**KORK EXTERNE MORE**

Case Study: Generative Language Models

▶ Learning Model

- ▶ Character based language model based on LSTM
- ▶ Trained on the novel "Alice in wonderland"
- \blacktriangleright Insertion of a canary sentence to induce memorization¹
- ▶ "'My telephone number is 0123456789', said Alice."
- \blacktriangleright Task
	- ▶ Unlearn the memorized number by changing features and labels
	- ▶ "'My telephone number is not here', said Alice."

\blacktriangleright Evaluation

- \blacktriangleright Exposure metric for efficacy of unlearning
- ▶ Accuracy on training data for fidelity

¹The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks, Usenix Security, 2019**KORK EXTERNE MORE**

▶ Start sentence "'My telephone number is "

 \blacktriangleright Induces probability distribution over 36¹⁰ possible completions

KORK EXTERNE MORE

▶ Start sentence "'My telephone number is "

- \blacktriangleright Induces probability distribution over 36¹⁰ possible completions
- \triangleright To measure how surprised the model is we use log-perplexity

$$
Px(x_1 \ldots x_{10}) = -\log(\mathbf{Pr}(x_1 \ldots x_{10}))
$$

KOD KAR KED KED E YOUN

▶ Start sentence "'My telephone number is "

- \blacktriangleright Induces probability distribution over 36¹⁰ possible completions
- \triangleright To measure how surprised the model is we use log-perplexity

$$
Px(x_1 \ldots x_{10}) = -\log(\mathbf{Pr}(x_1 \ldots x_{10}))
$$

Sample 10^7 random completions to approximate distribution

▶ Start sentence "'My telephone number is "

- Induces probability distribution over 36^{10} possible completions
- \triangleright To measure how surprised the model is we use log-perplexity

$$
Px(x_1 \ldots x_{10}) = -\log(\mathbf{Pr}(x_1 \ldots x_{10}))
$$

 \blacktriangleright Sample 10¹⁰ random completions to approximate distribution ▶ "'My telephone number is 8584881081"

▶ Start sentence "'My telephone number is "

- Induces probability distribution over 36^{10} possible completions
- \triangleright To measure how surprised the model is we use log-perplexity

$$
Px(x_1 \ldots x_{10}) = -\log(\mathbf{Pr}(x_1 \ldots x_{10}))
$$

 \blacktriangleright Sample 10¹⁰ random completions to approximate distribution ▶ "'My telephone number is 0123456789"

▶ Start sentence "'My telephone number is "

- Induces probability distribution over 36^{10} possible completions
- \triangleright To measure how surprised the model is we use log-perplexity

$$
Px(x_1 \ldots x_{10}) = -\log(\mathbf{Pr}(x_1 \ldots x_{10}))
$$

 \blacktriangleright Sample 10¹⁰ random completions to approximate distribution ▶ "'My telephone number is 0123456789"

Result

Removing unintended memorization is surprisingly simple and renders extraction of memorized information infeasible.

Unlearning unintended memorization - Fidelity & Efficiency

- ▶ Performance is close to retraining for small number of canaries
- \blacktriangleright Substantial speedup compared to retraining (up to 100 \times)

Unlearning unintended memorization

 \blacktriangleright How is the canary completed after unlearning?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

- ▶ Prediction of replacement?
- \blacktriangleright Gibberish caused by unlearning?

Unlearning unintended memorization

\blacktriangleright How is the canary completed after unlearning?

▶ Completions preserve structure of the dataset and punctuation

Case Study: Poisoning Attacks

▶ Model

▶ Convolutional network (VGG) for image classification (CIFAR-10)

K ロ X K @ X K 할 X X 할 X : 할 X Y Q Q @

▶ Flipping of image labels to reduce performance

Case Study: Poisoning Attacks

▶ Model

▶ Convolutional network (VGG) for image classification (CIFAR-10)

KOD KAR KED KED E YOUN

- ▶ Flipping of image labels to reduce performance
- \blacktriangleright Task

 \triangleright Unlearn the poisoned samples by correcting the labels

Case Study: Poisoning Attacks

▶ Model

- ▶ Convolutional network (VGG) for image classification (CIFAR-10)
- \blacktriangleright Flipping of image labels to reduce performance
- \blacktriangleright Task
	- \blacktriangleright Unlearn the poisoned samples by correcting the labels

\blacktriangleright Evaluation

 \triangleright Accuracy on test data after unlearning for Efficacy & Fidelity

Unlearning Poisoning

▶ No approach can remove poisoning effect completely

▶ Great speedup compared to retraining

Limitations

▶ Size of changes matters

- ▶ Our approach can fix defects caused by few erroneous samples
- \blacktriangleright Retraining is inevitable at some point

▶ Certification only for convex loss functions

- ▶ Modern neural networks have usually non-convex loss
- ▶ Could be mitigated by application to final layers only
- ▶ Unlearning requires detection
	- \blacktriangleright Finding data to be removed is a hard problem in the real world

Conclusion

- ▶ We propose two unlearning updates $\theta = \theta^* + \mathcal{U}(Z, \tilde{Z})$
	- ▶ First order update uses gradient information
	- ▶ Second order update includes Hessian matrix
- \triangleright We derive conditions to enable certified unlearning
- \triangleright We show that our approach can solve security problems

