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Approach

▶ Input given by model and its parameters θ∗

▶ Framework for unlearning: θ = θ∗ + U(Z , Z̃)
▶ Z contains the datapoints to be fixed, z = (x, y)
▶ Z̃ contains the corrected datapoints z̃ = (x + δx , y + δy)

▶ Difference in gradients of loss used as basis

∆(Z , Z̃) =
∑
z̃∈Z̃

ℓ(z̃, θ∗)−
∑
z∈Z

∇ℓ(z, θ∗)

▶ U(Z , Z̃) = −τ∆(Z , Z̃) (First-Order)
▶ U(Z , Z̃) = −H−1

θ∗ ∆(Z , Z̃) (Second-Order)
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Certified Unlearning

▶ How can we guarantee that information has been removed?

▶ Guarantee that unlearning is indistinguishable from retraining
▶ Add random noise to parameters
▶ Bound the difference between retraining and unlearning

e−ϵ ≤
P
(

”Model after unlearning”
)

P
(

”Retrained model”
) ≤ eϵ

▶ Inspired by the concept of differential privacy (DP)
▶ Theorem

▶ Both update strategies are certified for convex loss functions
with bounded derivatives.
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Evaluating Unlearning

▶ We propose three criteria for evaluation

▶ Efficacy
▶ We require measure that information has been removed

▶ Fidelity
▶ Classification performance should be close to the original model

▶ Efficiency
▶ The Unlearning algorithm must be faster than retraining

▶ All criteria must hold at the same time! We don’t need
▶ Fast algorithms with low fidelity or efficacy
▶ Algorithms with high fidelity or efficacy that are slow
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Case Study: Generative Language Models

▶ Learning Model
▶ Character based language model based on LSTM
▶ Trained on the noveļ "Alice in wonderland"
▶ Insertion of a canary sentence to induce memorization1

▶ "’My telephone number is 0123456789’, said Alice."

▶ Task
▶ Unlearn the memorized number by changing features and labels
▶ "’My telephone number is not here ’, said Alice."´

▶ Evaluation
▶ Exposure metric for efficacy of unlearning
▶ Accuracy on training data for fidelity

1The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks, Usenix Security, 2019
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▶ Trained on the noveļ "Alice in wonderland"
▶ Insertion of a canary sentence to induce memorization1

▶ "’My telephone number is 0123456789’, said Alice."
▶ Task

▶ Unlearn the memorized number by changing features and labels
▶ "’My telephone number is not here ’, said Alice."´

▶ Evaluation
▶ Exposure metric for efficacy of unlearning
▶ Accuracy on training data for fidelity

1The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks, Usenix Security, 2019



Case Study: Generative Language Models

▶ Learning Model
▶ Character based language model based on LSTM
▶ Trained on the noveļ "Alice in wonderland"
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Unlearning unintended memorization - Efficacy

▶ Start sentence "’My telephone number is "
▶ Induces probability distribution over 3610 possible completions

▶ To measure how surprised the model is we use log-perplexity

Px(x1 . . . x10) = − log(Pr(x1 . . . x10))
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Unlearning unintended memorization - Efficacy

Result
Removing unintended memorization is surprisingly simple and
renders extraction of memorized information infeasible.
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Unlearning unintended memorization - Fidelity & Efficiency

▶ Performance is close to retraining for small number of canaries
▶ Substantial speedup compared to retraining (up to 100×)
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Unlearning unintended memorization

▶ How is the canary completed after unlearning?
▶ Prediction of replacement?
▶ Gibberish caused by unlearning?



Unlearning unintended memorization

▶ How is the canary completed after unlearning?
▶ Completions preserve structure of the dataset and punctuation

Length Replacement My telephone number is ...

5 taken ‘... mad!’ ‘prizes! said the lory confused . . .
10 not there␣ ‘... it,’ said alice. ‘that’s the beginning . . .
15 under the mouse ‘... the book!’ she thought to herself ‘the . . .
20 the capital of paris ‘... it all about a gryphon all the three of . . .



Case Study: Poisoning Attacks

▶ Model
▶ Convolutional network (VGG) for image classification (CIFAR-10)
▶ Flipping of image labels to reduce performance

▶ Task
▶ Unlearn the poisoned samples by correcting the labels

▶ Evaluation
▶ Accuracy on test data after unlearning for Efficacy & Fidelity
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Unlearning Poisoning

▶ No approach can remove poisoning effect completely
▶ Great speedup compared to retraining
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Limitations

▶ Size of changes matters
▶ Our approach can fix defects caused by few erroneous samples
▶ Retraining is inevitable at some point

▶ Certification only for convex loss functions
▶ Modern neural networks have usually non-convex loss
▶ Could be mitigated by application to final layers only

▶ Unlearning requires detection
▶ Finding data to be removed is a hard problem in the real world



Conclusion

▶ We propose two unlearning updates θ = θ∗ + U(Z , Z̃)
▶ First order update uses gradient information
▶ Second order update includes Hessian matrix

▶ We derive conditions to enable certified unlearning
▶ We show that our approach can solve security problems


