

Adversarial Robustness for Tabular Data through Cost and Utility Awareness

Klim Kireev,* Bogdan Kulynych,* Carmela Troncoso

NDSS 2023, San Diego

Adversarial examples

"Panda"

"Gibbon"

Adversarial examples

Comes to mind when someone says "adversarial attack"

Example of a security-critical ML system: Fraud detector

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes
		1		

output

Example of a security-critical ML system: Fraud detector

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud			
\$267	Visa	epfl.ch	Italy	Yes			
Transaction Amount	Card Type	Recipient Email	Billing country	Fraud			
\$267	Visa	gmail.com	Italy	No			

Example of a security-critical ML system: Fraud detector

What happened here is also an evasion attack on tabular data

Other security-critical ML application areas

Fraud detection

Bot detection

Other security-critical ML application areas

Fraud detection

Bot detection

Machine learning systems working on these problems operate on tabular data

Domains studied in the academic literature

Domains studied in the academic literature

Standard definition of adversarial examples

$$\max_{x' \in \mathscr{F}(x,y)} \ell(f(x'),y) \quad \text{s.t.} \quad \|x'-x\|_{p} \leq \varepsilon$$

$$L_{p} \text{ distance, } L_{a} \text{ and } L_{2} \text{ are the most popular choices}}$$

Standard definition of adversarial examples

$$\max_{x' \in \mathscr{F}(x,y)} \ell(f(x'),y) \quad \text{s.t.} \|x'-x\|_{p} \leq \varepsilon$$
$$\overset{\text{L}_{p} \text{ distance, } L_{\infty} \text{ and } L_{2} \text{ are the most popular choices}}$$

This definition was designed for images

$$\max_{x' \in \mathcal{F}(x,y)} \ell(f(x'), y) \quad \text{s.t.} \, \left\| x' - x \right\|_p \le \varepsilon$$

$$\max_{x' \in \mathcal{F}(x,y)} \ell(f(x'),y) \quad \text{s.t.} \, \left\| x' - x \right\|_p \le \varepsilon$$

It is definitely an imperceptible change

$$\max_{x' \in \mathcal{F}(x,y)} \ell(f(x'), y) \quad \text{s.t.} \, \left\| x' - x \right\|_p \le \varepsilon$$

It is definitely an imperceptible change "Imperceptibility" implicitly defines threat model

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

Transaction x'

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	MasterCard	gmail.com	UK	No

Transaction x:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

Transaction x'

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	MasterCard	gmail.com	UK	No

But what about this change? Is it imperceptible?

$$\left\|x' - x\right\|_{p} \le \varepsilon \quad \Longrightarrow \quad c(x, x') \le \varepsilon$$

$$\left\|x' - x\right\|_{p} \le \varepsilon \quad \Longrightarrow \quad c(x, x') \le \varepsilon$$

We define adversarial capabilities through financial constraints

$$\left\|x' - x\right\|_{p} \le \varepsilon \quad \Longrightarrow \quad c(x, x') \le \varepsilon$$

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

$$\left\|x' - x\right\|_{p} \le \varepsilon \quad \Longrightarrow \quad c(x, x') \le \varepsilon$$

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud	
\$267	Visa	epfl.ch	Italy	Yes	
Transaction <i>x</i> ':	\$20	\$0.5	\$14	c(x, x')	= \$ 34.5

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	MasterCard	gmail.com	UK	No

Value of different adversarial examples in image domains

Value of different adversarial examples in image domains

These two pandas have the same value for an adversary

Value of different adversarial examples in tabular data

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

Value of different adversarial examples in tabular data

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

Transaction *x**:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$28	Visa	epfl.ch	Italy	Yes

Value of different adversarial examples in tabular data

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes

Transaction *x**:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$28	Visa	epfl.ch	Italy	Yes

What about these transactions?

$$u_{x,y}(x') \triangleq g(x') - c(x,x')$$

Gain g(x') – potential returns from an attack, e.g. Transaction Amount

$$c(x, x') \le \varepsilon$$
 $u_{x, y}(x') \ge \tau$

$$u_{x,y}(x') \triangleq g(x') - c(x,x')$$

Gain g(x') – potential returns from an attack, e.g. Transaction Amount

Tau is minimum "profit" level of the adversary

$$u_{x,y}(x') \triangleq g(x') - c(x,x')$$

Gain g(x') – potential returns from an attack, e.g. Transaction Amount

Tau is minimum "profit" level of the adversary

Cost constraint is replaced with "profit" constraint

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes
Transaction x':	\$20	\$0.5	\$14	
Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	MasterCard	gmail.com	UK	No

Transaction *x*:

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	Visa	epfl.ch	Italy	Yes
Transaction x':	\$20	\$0.5	\$14	
Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	MasterCard	gmail.com	UK	No

$$u_{x,y}(x') = \$ 267 - \$ 34.5 = \$ 232.5$$

Contribution I: Threat Models for the Tabular Data

Cost-Bounded Objective $\max_{x \in \mathscr{F}(x,y)} \mathscr{\ell}(f(x'), y) \quad \text{s.t. } c(x, x') \le \varepsilon$

Utility-Bounded Objective

 $\max_{x' \in \mathcal{F}(x,y)} \ell(f(x'), y) \quad \text{s.t. } u_{x,y}(x') \ge \tau$

Both can have a financial interpretation

Contribution II: Attacks and defense methods

- 1. Graph search-based attack
- 2. Relaxation-based adversarial training

Both for cost-constrained and utility-oriented adversaries!

Evaluation of our methods

Dataset	IEEECIS Fraud detection	HomeCredit default risk	TwitterBot
Goal	Fraud detection	Loan repayment	Bot detection
Gain	Transaction amount	Loan amount	Number of followers

Attack Based on Greedy Graph Search

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267 Visa		epfl.ch	Italy	Yes

Attack Based on Greedy Graph Search

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267 Visa		epfl.ch	Italy	Yes

The attack is essentially a graph search

Attack Based on Greedy Graph Search

Transaction Amount	Card Type	Recipient Email	Billing country	Fraud
\$267	\$267 Visa		Italy	No

The attack is essentially a graph search

Standard attack (PGD) fails within our threat models

Attacks bring profit to the adversary and are model-agnostic!

Defenses: Adversarial Training

$$\min_{\theta} \max_{x \in \mathcal{F}(x,y)} \ell(f_{\theta}(x'), y) \quad \text{s.t. } c(x, x') \le \varepsilon$$

The standard way to obtain robust models is training on adversarial examples However...

Defenses: Adversarial Training

$$\min_{\theta} \max_{x \in \mathcal{F}(x,y)} \ell(f_{\theta}(x'), y) \quad \text{s.t. } c(x, x') \le \varepsilon$$

The standard way to obtain robust models is training on adversarial examples However...

Graph-based attack takes 1-10 seconds per one sample

Constraint relaxation

{'Visa', 'MasterCard'} → {[1,0], [0, 1]}

Constraint relaxation

{'Visa', 'MasterCard'} → {[1,0], [0, 1]}

Constraint relaxation

{'Visa', 'MasterCard'} → {[1,0], [0, 1]}

We relax the discrete graph search problem to continuous optimization

Evaluation: Cost-bounded Adversarial Training

Model

- Clean (Acc: 0.77)
- CB ε = 1 (Acc: 0.73)
- CB ε = 3 (Acc: 0.72)
- CB ε = 10 (Acc: 0.69)
- CB ε = 30 (Acc: 0.66)

Evaluation: Utility-bounded Adversarial Training

Strongest defenses (against margin of \$0-50)

- Clean (Acc: 0.77)
- UB $\tau = 500$ (Acc: 0.75)
- UB $\tau = 200$ (Acc: 0.73)
- UB au = 100 (Acc: 0.70)
- UB au = 50 (Acc: 0.69)
- UB $\tau = 20$ (Acc: 0.69)
- UB au = 10 (Acc: 0.66)
- UB $\tau = 0$ (Acc: 0.68)

Adversarial Robustness for Tabular Data Through Cost and Utility Awareness

arxiv.org/abs/2208.13058

1. Threat models suitable for tabular adversaries:

- a. Cost-constrained adversary to capture financial costs
- b. Utility-oriented adversary to also recognize different profit from different examples

2. Attacks and defenses within these threat models:

- a. Efficient, model-agnostic graph-based attack
- b. Adversarial training as defense. The version which trains against Utility-oriented adversaries increases security in both threat models!

Metrics

Adversarial success rate - the proportion of correctly classified samples from the test set for which an adversary mounted a successful attack

It is the principal metric for a cost-constrained adversary

Average utility - average utility of successfully generated adversarial examples

We propose it to evaluate a utility-oriented ardersary

Attacks bring profit to the adversary and are model-agnostic

IEEECIS. Model (test acc.): • LR (0.62) • XGBT (0.83) • TabNet (0.77)

Trade-offs

• CB-trained models • UB-trained models × Clean model

Attacks

Transaction Amount	Card Type	Recipient Email	Billing country
\$267	Visa	epfl.ch	Italy

Attacks

 TransactionID 	# TransactionDT	# TransactionA	A ProductCD	# card1	# card2	# card3				
663549	18403224	31.95	W	10409	111.0	150.0				
663550	18403263	49.0	W	4272	111.0	150.0				
663551	18403310	171.0	W	4476	574.0	150.0				
663552	18403310	284.95	W	10989	360.0	150.0				
563553	18403317	67.95	W	18018		# AMT INCO =	# AMT CRF =	# AMT ANN =	# REGION P =	# DAYS BIR
563554	18403323	57.95	W	12839			in run _onen _	0.00012000000		in bitt o_bittin
563555	18403350	87.0	W	16560 0		135000.0	568800.0	20560.5	0.01885	-19241
563556	18403387	390.0	W	15066 0		99000.0	222768.0	17370.0	0.035792	-18064
563557	18403405	103.95	W	2803 0		202500.0	663264.0	69777.0	0.019101	-20038
563558	18403416	117.0	W	12544 2		315000.0	1575000.0	49018.5	0.026392	-13976
663559	18403474	261.95	W	16982		100000 0	625500 0	22067 0	0.010022	12040
602561	18403504	107.95	W	9500		180000.0	025500.0	32007.0	0.010032	-13040
003001	18403508	335.0	n	18366 0		270000.0	959688.0	34600.5	0.025164	-18604
				2		180000.0	499221.0	22117.5	0.0228	-16685
				0		166500.0	180000.0	14220.0	0.005144	-9516
				0		315000.0	364896.0	28957.5	0.04622	-12744
				1		162000.0	45000.0	5337.0	0.018634	-10395
				0		67500.0	675000.0	25447.5	0.0031219999999 999	-23670
				0		135000.0	261621.0	16848.0	0.008019	-15524
				0		247500.0	296280.0	23539.5	0.018634	-12278
				0		90000.0	360000.0	18535.5	0.0145199999999 999	-19687

Romain

@Mediomatrix7822349

Replying to @ElonMusk

The war in Ukraine is clearly fake. There has been no footage whatsoever!

Translate Tweet

12:52 PM · Feb 27, 2023 · 1 View · Twitter for Android

Romain @Mediomatrix7822349

Replying to @ElonMusk

The war in Ukraine is clearly fake. There has been no footage whatsoever!

Translate Tweet

12:52 PM · Feb 27, 2023 · View Twitter for iPhone

Adversarial Cost

min.	avg.	max.
\$0.02	\$35.7	\$281.6