
Accountable Javascript
Code Delivery
Ilkan Esiyok* (CISPA),
Pascal Berrang (University of Birmingham and Nimiq),
Katriel Cohn-Gordon (Meta),
Robert Kuennemann (CISPA)

NDSS 2023, San Diego

2

Motivation

The web is ephemeral

3

Motivation

The web page looks the same but the active content has changed

4

Motivation

A compromised or malicious web server can easily target classes of users:
• The web server might insert malware based on browser fingerprint

5

Motivation

A compromised or malicious web server can easily target classes of users:
• The web server might insert malware based on browser fingerprint
• The server might use the browser for cryptojacking

6

Motivation

A compromised or malicious web server can easily target classes of users:
• The web server might insert malware based on browser fingerprint
• The server might use the browser for cryptojacking

There is a lack of trust between developers and users in web infrastructure

7

Security goals

• Our target audience: websites that want to establish and maintain trust to their
users

• Examples:

8

Security goals

• Our target audience: websites that want to establish and maintain trust to their
users

• Examples:

wants users to trust that they
really encrypt their emails

9

Security goals

• Our target audience: websites that want to establish and maintain trust to their
users

• Examples:

wants users to trust that they
really encrypt their emails

wants users to trust that they
don’t have access to users’ funds

10

Security goals

• Our target audience: websites that want to establish and maintain trust to their
users

• Examples:

wants users to trust that they
really encrypt their emails

wants users to trust that they
don’t have access to users’ funds

Code Verify : allow users to trust
that the web client keeps their
messages secret

11

Risk mitigation strategies

12

Risk mitigation strategies

• Auditing

• Works for App stores

• Malicious server can choose to load unaudited code in runtime

13

Risk mitigation strategies

• Accountability

• Works for App stores (Developers can be held accountable for malicious code)

• No public record of the code and the developer’s identity

14

Accountable JS
Provide accountable delivery of active content, using :

15

Accountable JS
Provide accountable delivery of active content, using :

16

Accountable JS
Provide accountable delivery of active content, using :

17

Accountable JS
Provide accountable delivery of active content, using :

18

Accountable JS

• Provide a signed manifest enumerating all the active content
• Browser extension

• Measures the delivered active content and compares with the manifest

19

Accountable JS

• Separate the developer and the web server

• Use public transparency logs

20

Manifest file

• Simple text file in JSON format

• List of metadata for each active content in the web page

21

Manifest file

• Each active content metadata must have a trust declaration

• The compliance check method is decided based on trust value

22

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

23

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

24

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

• Case studies :

25

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

• Case studies :

• Self contained applications : WhatsApp web

26

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

• Case studies :

• Self contained applications : WhatsApp web

• Developer vouches for their own content

27

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

• Case studies :

• Self contained applications : WhatsApp web

• Developer vouches for their own content

• Trusted third party code : JQuery

28

Manifest file

• Trust values : assert

• The developer provides hash of active content and asserts that it behaves as
intended

• Measurement – compliance check :

• Compare the delivered hash against the hash in the manifest

• Case studies :

• Self contained applications : WhatsApp web

• Developer vouches for their own content

• Trusted third party code : JQuery

• Developer pins the third-party code to a precise version that was
audited

29

Manifest file

• Trust values : delegate

• The developer refers the trust to the third-party that provides the element

30

Manifest file

• Trust values : delegate

• The developer refers the trust to the third-party that provides the element

• Now the third party is taking the responsibility for this code

31

Manifest file

• Trust values : delegate

• The developer refers the trust to the third-party that provides the element

• Now the third party is taking the responsibility for this code

• The developer doesn’t want to vouch for the third-party

32

Manifest file

• Trust values : delegate

• The developer refers the trust to the third-party that provides the element

• Now the third party is taking the responsibility for this code

• The developer doesn’t want to vouch for the third-party

• Or she always wants to use the latest version

33

Manifest file

• Trust values : delegate

• The developer refers the trust to the third-party that provides the element

• Now the third party is taking the responsibility for this code

• The developer doesn’t want to vouch for the third-party

• Or she always wants to use the latest version

• Case study :

• The third-party willing to vouch for their code : Nimiq Wallet

34

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

35

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

• The developer is responsible to properly sandbox that code

36

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

• The developer is responsible to properly sandbox that code

• Measurement – compliance check :

• Compare delivered sandbox against the sandbox in manifest

37

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

• The developer is responsible to properly sandbox that code

• Measurement – compliance check :

• Compare delivered sandbox against the sandbox in manifest

• Case study :

• The third-party code through Adbidding blind-trusted :
• Adsense (blind-trust + sandbox) + Nimiq Wallet (delegate)

38

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

• The developer is responsible to properly sandbox that code

• Measurement – compliance check :

• Compare delivered sandbox against the sandbox in manifest

• Case study :

• The third-party code through Adbidding blind-trusted :
• Adsense (blind-trust + sandbox) + Nimiq Wallet (delegate)

39

Manifest file

• Trust values : blind-trust

• The developer blindly trusts the active content without identifying the code

• The developer is responsible to properly sandbox that code

• Measurement – compliance check :

• Compare delivered sandbox against the sandbox in manifest

• Case study :

• The third-party code through Adbidding blind-trusted :
• Adsense (blind-trust + sandbox) + Nimiq Wallet (delegate)

• Adsense (blind-trust) + Nimiq Wallet (delegate + sandbox)

40

Measurement procedure

• Content scripts collect active content metadata

41

Measurement procedure

• Compliance check : measures the active content and compares w/ manifest

42

Evaluation

• Compatibility and performance analysis on the case studies

• How much does Accountable JS extension affect page load time?

• Lighthouse metrics :

• Time until browser paints the first pixel,

• Total blocking time

43

Evaluation results
Case study First pixel

Baseline Accountable JS
Total blocking time

Baseline Accountable JS

Trusted third-party
(JQuery)

462 +21 0 +0

Delegate trust
(Nimiq Wallet)

262 - 10 172 +87

Untrusted third-party
(Adsense + Nimiq Wallet)

747 +91 159 +77

Total page load
Baseline Code Verify Accountable JS

WhatsApp Web 204 +16 +40

• Baseline is all extensions disabled
• All numbers are in milliseconds
• Change below 100 ms is considered imperceptible

44

Related work

• Content Security Policy (CSP)

• List of valid sources

45

Related work

• Content Security Policy (CSP)

• List of valid sources
• Unknown resources denied

46

Related work

• Content Security Policy (CSP)

• List of valid sources
• Unknown resources denied
• No accountability

47

Related work

• Content Security Policy (CSP)

• List of valid sources
• Unknown resources denied
• No accountability
• Not designed to know the order of resources in the webpage
• Resource A loaded before B might mean something different from

B then A
• This can be used for microtargeting

48

Related work

• Content Security Policy (CSP)

• List of valid sources
• Unknown resources denied
• No accountability
• Not designed to know the order of resources in the webpage
• Resource A loaded before B might mean something different than

B then A
• This can be used for microtargeting

• No delegation support

49

Related work

• Code Verify from Meta

• Likewise implementing accountability for active content

50

Related work

• Code Verify from Meta

• Likewise implementing accountability for active content

• Manifest is hashed not signed -> no accountability

51

Related work

• Code Verify from Meta

• Likewise implementing accountability for active content

• Manifest is hashed not signed -> no accountability

• No history of versions -> no transparency

• Public cannot know how often the versions change

52

Conclusion

• Accountable JS

53

Conclusion

• Accountable JS

• improve the trust on security-critical websites

54

Conclusion

• Accountable JS

• improve the trust on security-critical websites

• enhance security by deterrence

55

Conclusion

• Accountable JS

• improve the trust on security-critical websites

• enhance security by deterrence

• increase transparency

• public can see how their data is used

56

Conclusion

• Accountable JS

• improve the trust on security-critical websites

• enhance security by deterrence

• increase transparency

• public can see how their data is used

• become part of the browsers some day

57

Conclusion

• What will you find in the paper?

58

Conclusion

• What will you find in the paper?

• Details about Accountable JS protocol flow

59

Conclusion

• What will you find in the paper?

• Details about Accountable JS protocol flow

• Case studies and evaluations on CSP and Code Verify

60

Conclusion

• What will you find in the paper?

• Details about Accountable JS protocol flow

• Case studies and evaluations on CSP and Code Verify

• Threat model and assumptions

61

Conclusion

• What will you find in the paper?

• Details about Accountable JS protocol flow

• Case studies and evaluations on CSP and Code Verify

• Threat model and assumptions

• Protocol verification details

• Automated protocol verification : Tamarin and SAPIC

62

End

• Thank you very much

63

Manifest file

• Active content types

64

Manifest file

• Execution order and static-dynamic content

65

Protocol verification

• Security protocol

• Establish security guarantees à formal methods

66

Protocol verification

• Security protocol

• Establish security guarantees à formal methods

• Analysed with Tamarin Prover + SAPIC

67

Security properties

Accountable JS Code Verify
• Authentication of origin • Authentication of origin
• Transparency
• Accountability • Non-accountability
• End-to-end guarantee • End-to-end guarantee

68

Security properties

Authentication of origin : The client executes active content only if the corresponding manifest
was generated by the honest developer unless the developer is corrupted (or Cloudflare in CV),
Transparency : If the client executes code then its manifest is present in a transparency log,
Accountability : When the public accepts a claim, then even if the client was corrupted,
the code must exist in the logs and the server must have sent that data
Non-accountability : The data provided to the client is not sufficient to prove they received
certain content from the web server, even if web server and Cloudflare are honest.
End-to-end guarantee : Only by corrupting the developer it is possible to distribute malicious code.

69

Security properties

• Accountability and authentication of origin
• A client executes the code only if it was made public by the developer

70

Security properties

• Accountability and authentication of origin
• A client executes the code only if it was made public by the developer

• Non-repudiation of reception
• A client wants to present false claim about the executed code

71

Security properties

• Accountability and authentication of origin
• A client executes the code only if it was made public by the developer

• Non-repudiation of reception
• A client wants to present false claim about the executed code

• Accountability of latest version
• A client wants to ensure he is delivered the latest code

72

Security properties

• Accountability and authentication of origin
• A client executes the code only if it was made public by the developer

• Non-repudiation of reception
• A client wants to present false claim about the executed code

• Accountability of latest version
• A client wants to ensure he is delivered the latest code

Security properties of the Code Verify are discussed in the paper

73

Transparency logs

• Clients can verify they received the latest and the same version of the code
as any other user

• Public append-only log:

• Trusted, efficient, available
• Provides non-equivocation
• Third-party auditors and monitors keep it honest

• Trillian : allows to prove append operations efficiently
• Misbehaviour can be detected by trusted public auditors or by honest

logs distributing such proofs (with gossiping)

74

Transparency logs – availability, scalability

• Use load balancing, avoid single point of failure

• Stapling method decreases the number of requests to the log

• Websites that frequently update active content:

75

Limitations

• Active content injected by other browser extensions

• Data – only attacks

• e.g. modified button labels or redirect form URLs, change recipient’s wallet
address during payment transaction

• Protocol flow

76

• Code stapling

• Protocol flow

77

• Code delivery

