Can You Tell Me the Time?

Security Implications of the Server-Timing Header

<u>Vik Vanderlinden</u>, Wouter Joosen, Mathy Vanhoef

Overview

- Timing Attacks
 - Goal
 - Data analyses
- Server-Timing header
- Web Prevalence
 - Adoption
 - Attribution
 - Other headers
- Attack Techniques
 - Threat model
 - Experimental setup
 - Data analyses
 - Results & defenses

Timing Attacks

The goal: Measure time to leak secrets

Timing Attacks

Calculate 0 * 47 ...

Calculate 46 * 47 ...

Calculation time == information leak: e.g. operand

- Remote: over internet
 - Noise (δ) due to network & middleboxes^{[4], [7]}

• T = RTT =
$$(t + \delta)_{up}$$
 + $(t + \delta)_{exec}$ + $(t + \delta)_{down}$

The goal: Measure time to leak secrets

Timing Attacks

```
Calculate 0 * 47 ... = 0

Calculate 46 * 47 ...... = 2 162
```

Calculation time == information leak: e.g. operand

- Remote: over internet
 - Noise (δ) due to network & middleboxes^{[4], [7]}

•
$$T = RTT = (t + \delta)_{up} + (t + \delta)_{exec} + (t + \delta)_{down}$$

How to analyze: Use box test[1]

Timing Attacks

Distribution of RTTs (99600 samples)

Two baselines? Sanity check

 $\Rightarrow \Delta t$ reveals user age

Server-Timing header

Server-Timing header^[2] exposes timing info

- W3C working draft
- Performance & debugging data

```
server-timing:
    processing;dur=1175,db;dur=370,parse;dur=36,
    render;dur=357,asn;desc="36236",edge;desc="LAX",country;desc="US",
    theme;desc="Conversion Optimizations Updates 1/12/2023",pageType;desc="index"
server-timing: cfRequestDuration;dur=1241.999865
```

'dur' property: 1 ms accuracy^[3]

Web Prevalence

Increasing adoption in recent years/months

Web Prevalence

Queried https://httparchive.org/ data

rank	# scanned	# header (%)	# dur (%)
1k	695	6.04%	5.47%
100M	10.192M	5.44%	3.50%

Main attribution to one e-commerce vendor

Web Prevalence

- Crawl 100k sites
 - Forms
 - Same-origin action
 - o 73.12% dynamic

server	# header (%)	# with 'dur' property (%)
cloudflare	3.02%	3.01%
pepyaka	1.81%	0.00%
nginx	0.27%	0.25%
apache	0.07%	0.05%
cloudfront	0.02%	0.02%
all	5.44%	3.50%

Other headers also leak timing info

Web Prevalence

regex	# sites (out of 10 194 945)	%
(run)?-?_?time?(ing)?	894 314	8.8%
(run)?-?_?time	341 048	3.3%
run-?_?time	195 091	1.9%

Attack Techniques

Threat model

Attack Techniques

Geography

- Random device (e.g. malware/stored XSS)
- No XS attack
 - timing-allow-origin^{[2],[5]}
 - CORS access-control-expose-headers^[6]

Experimental setup

Attack Techniques

$$T = RTT = (t + \delta)_{up} + (t + \delta)_{exec} + (t + \delta)_{down}$$

$$T = \times (t + \delta)_{exec} \times$$

Experimental setup

Attack Techniques

- Client
 - University cloud
 - Home network

- server-timing header
 - Nginx \$request_time
 - Full request time
 - No specific 'dur' tested

Server

- Google Cloud
- Nginx

Configurations

- $\begin{array}{ccc}
 & \mathsf{EU} \to \mathsf{EU}, \\
 & \mathsf{EU} \to \mathsf{US}
 \end{array}$
- \circ EU \rightarrow EU \rightarrow EU,
 - $EU \rightarrow EU \rightarrow US$,
 - $EU \ \rightarrow \ US \ \rightarrow \ US$

Data analyses

Attack Techniques

- No box test
- χ^2 -contingency test
 - Best of 4 statistics tested

Classify 95% correctly

Distributions resulting from RTT vs server-timing data

Data analyses

Attack Techniques

- No box test
- χ^2 -contingency test
 - Best of 4 statistics tested

Classify 95% correctly

Distributions resulting from RTT vs server-timing data

Results

Attack Techniques

Proxied attack

Attack + Test	Network	Proxy	$5\mu s$	$10 \mu s$	$20 \mu s$	$50 \mu s$	$100 \mu s$	$200 \mu s$	$500 \mu s$	1ms	2ms	5ms
standard RTT box test	university	$EU \rightarrow EU$	8=8	-	= 2	-1	10 000	10 000	500	500	20	20
		$EU \rightarrow US$	_	924		<u>=</u> 1	10 000	10 000	2000	200	10	10
		$US \rightarrow US$	-	-5		-	-	10 000	2000	500	5 000	50
	residential	$EU \rightarrow EU$	-	(-)		F 1	- 1	-	5 000	5000	200	20
		$EU \rightarrow US$	_	-	-	_	<u>=</u> 1	112	-	500	200	20
		$US \rightarrow US$	-	-	-	Ē	= 1	-	2000	5 000	1 000	20
server-timing \mathcal{X}^2 -contingency	university	$EU \rightarrow EU$	(-)	1-1	10 000	10 000	1 000	200	50	10	5	5
		$EU \rightarrow US$	(<u>**</u>)	(<u>-</u> 2)	=	10000	5 000	500	100	20	10	5
		$US \rightarrow US$	-	-	-	5 000	5 000	500	50	10	5	5
	residential	$EU \rightarrow EU$	_	_	_	<u>_</u>	1 000	_	50	10	5	5
		$EU \rightarrow US$	-	(-		-	5 000	500	100	50	10	5
		$US \rightarrow US$	-	-	-	-	_	10 000	50	10	5	5

Direct attack (similar) → paper

Defenses

Attack Techniques

Ideally: Don't use Server-Timing in production

Alternative: Educated decisions to expose

Full solution: Don't use sensitive timing values **Partial solutions:** Round timing value, pad sensitive operations

Responsible Disclosure

- Contacted authors W3C standard
- Contacted Shopify

No responses yet

Conclusion

- Server-Timing header enables timing attacks
- More sites start to use it, and already expose 'dur'
- We explored a direct and proxied attack
- Use of the header leads to improved timing attack performance
- Awaiting responsible to our responsible disclosures

Can You Tell Me Your Time?

<u>Vik Vanderlinden</u>, Wouter Joosen, Mathy Vanhoef imec-DistriNet, KU Leuven Belgium

vik.vanderlinden@kuleuven.be / @vikvanderlinden

References

[1] S. A. Crosby, D. S. Wallach, and R. H. Riedi, "Opportunities and Limits of Remote Timing Attacks," ACM Transactions on Information and System Security, vol. 12, no. 3, pp. 1–29, jan 2009. [Online]. Available:

https://dl.acm.org/doi/10.1145/1455526.1455530

- [2] C. Vazac and I. Grigorik, "Server timing: W3c working draft," https://www.w3.org/TR/server-timing/, 2022.
- [3] Y. Weiss, I. Grigorik, J. Simonsen, and J. Mann, "High resolution time: The domhighrestimestamp typedef," https://www.w3.org/TR/hrtime-3/#dom-domhighrestimestamp, 2022.
- [4] D. Brumley and D. Boneh, "Remote timing attacks are practical," Computer Networks, vol. 48, no. 5, pp. 701–716, aug 2005. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
- [5] Y. Weiss and N. Rosenthal, "Resource timing: Timing-allow-origin response header," https://www.w3.org/TR/resource-timing/#sec-timingallow-origin, 2022.
- [6] whatwg/fetch contributors, "Fetch standard: Cors protocol," https://fetch.spec.whatwg.org/#http-cors-protocol, 2023.
- [7] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, "Understanding network delay changes caused by routing events," ACM SIGMETRICS Performance Evaluation Review, vol. 35, no. 1, pp. 73–84, jun 2007. [Online]. Available: https://dl.acm.org/doi/10.1145/1269899.1254891

