BANS: Evaluation of Bystander Awareness Notification Systems for Productivity in VR

Shady Mansour, Pascal Knierim, Joseph O'Hagan, Florian Alt and Florian Mathis

> universität innsbruck

Why?

Background

- Introduction of head-mounted displays (HMDs) to the work environment
- The demand on **remote** offices increased significantly
- HMDs provide a fully configurable workspace
- Integration of peripheral input devices in the VR

Previous Work

Productivity Tasks in VR

Pressing Challenge:

- Efficient text input.
- Solution:
- Knierim et al. [1] visualized physical keyboards in VR using external sensors and tracking systems

• Meta's Tracked Keyboard SDK [2]

VR In Public Spaces

- Li et al. [3]:
 - Productivity tasks in VR in the rear seat of a car
- Effect of physical constraints in transportation and virtual working spaces on users' performance
- Ng et al. [4]
 - Use of multi-display virtual workspaces inside a simulated airplane
 - Effect of public transit on VR users' preferences of multi-display layouts

Bystander Awareness

• McGill et al. [5]:

- One bystander awareness system with two states: low and high engagement.
- Found to be disruptive

• Gottsacker et al. [6]:

- explored how the amount of information a notification depicts affects cross-reality interruptions
- found users preferred diegeticbased notifications to provide cross-reality interruptions.

The two states of McGill et al's bystander awareness system [5]

Fully diegetic avatar notification system I Gottsacker et al. [6]

Motivation

- Utilization of bystander awareness notification systems (BANS) to aid users in building awareness of potential attackers* in their surrounding
- Usage of such BANS during realistic
 VR productivity tasks in public spaces

How?

How?

- Develop different notification systems that aid VR users in establishing bystander awareness
- **Design a 3D simulation** allowing users to test and evaluate the designed notification systems

Baseline

No notification

A text popup informing the user that someone's watching

Text-UI

Least Disdplaved Informatio

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity in VR

Reality

11

13

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity in VR

Most Disdplayed Information

Reality ,

User Study

- Within-subject lab user study
- 28 participants ensured counterbalancing
- We measured:
 - Notification's usability (SUS¹), noticeability, understandability and intrusiveness
 - **Users'** sense of presence (IPQ²) and preference (semi-structured interview)

Nested Realities:

- simulated a plausible real world scenario and virtuality in VR

¹ System Usability Scale ² iGroup presence questionnaire

Results

IPQ - Experienced Realism

IPQ - General Presence

Extremely Difficult/Intrusive

Difficult/Intrusive Somewhat Difficult/Intrusive

Neither Difficult/Intrusive nor Easy/Unintrusive Somewhat Easy/Unintrusive

intrusive Easy/Unintrusive

Extremely Easy/Unintrusive

Understandability

Noticeability

Perceived Intrusiveness

/Intrusive Neither Difficult/Intrusive nor Easy/Unintrusive

Somewhat Easy/Unintrusive

Easy/Unintrusive Ext

"BANS increase VR users' bystander awareness and help them preserve their privacy without negatively impacting their sense of presence "

Questions

Recommendations

Consider how VR users can best be transitioned between realities when their bystander reality awareness is of relevance due to privacy or safety reasons.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _

HMDs equipped with BANS should be designed and implemented to support both VR users and bystanders in preserving their privacy.

_ _ _ _ _ _ _ _ _ _ _ _ _

Notification systems should use different modalities, to support VR users in noticing out-ofview notifications.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

VR users should be provided with full control over the BANS and their functionality.

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity in VR

27

Results

	(1) Baseline	(2) Text UI	(3) Avatar	(4) 2D-Radar	(5) Attention Marker	(6) 3D-Scan	(7) Passthrough	Friedman Test		Nemenyi Post-hoc	
IPQ	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	χ^2	p-value	Significant Pairs	
Spatial Presence	4.15 (1.14)	4.08(1.21)	4.26 (1.24)	4.12(1.20)	4.30 (1.19)	4.00 (1.30)	4.12(1.22)	5.95	0.43	NA	
Involvement	3.88 (1.25)	3.76(1.20)	3.62(1.18)	3.86 (1.21)	3.91 (1.20)	3.37(1.39)	3.18 (1.29)	17.29	0.008	2-7, 5-7	
Realism	3.37 (0.94)	3.27(0.70)	3.14(0.89)	3.29 (0.65)	3.46 (0.78)	3.29(0.79)	3.09 (0.89)	4.53	0.61	NA	
General Presence	4.46 (1.38)	4.00 (1.56)	4.43 (1.15)	4.07(1.49)	4.36 (1.29)	4.25(1.50)	4.36 (1.42)	4.07	0.67	NA	
	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	χ^2	p-value	Significant Pairs	
\mathbf{SUS}	63.04 (31.26)	80.80 (15.38)	78.12(17.82)	77.86(17.61)	77.14(18.73)	83.57 (17.82)	72.59 (25.32)	12.19	0.058	NA	
7-point Likert Scale	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)	χ^2	p-value	Significant Pairs	
Noticeability	2.71 (2.19)	6.82 (0.47)	6.39 (1.45)	6.14(1.33)	4.61(2.13)	5.64 (2.09)	4.68(2.79)	59.75	< 0.001	1-2, 1-3, 1-4, 1-6, 2-3, 2-5	
Understandability	2.89 (2.18)	6.57 (1.08)	5.96 (1.72)	5.89 (1.37)	4.57(2.11)	5.68(1.96)	4.39(2.54)	55.44	< 0.001	1-2, 1-3, 1-4, 1-6, 2-5, 2-7	
Perceived Intrusiveness	1.89 (1.50)	3.61 (2.02)	2.93(1.79)	3.29 (1.83)	1.89 (1.21)	2.75(1.81)	3.00 (2.15)	26.97	< 0.001	1-2, 1-4, 1-5	

**Green denotes greatest mean, Yellow second greatest, and Orange third greatest. Red highlights the lowest mean. Blue denotes *p* < 0.005

IPQ – Spatial Presence

- Highest: Attention Marker
- Lowest: **3D Scan**
- No significant differences
- Users' sense of spatial presence wasn't affected

^{*}Error bars denote standard deviation

IPQ - Spatial Presence

IPQ – General Presence

- Highest: **Baseline**
- Lowest: **Text UI**
- No significant differences
- Users' general sense of presence wasn't affected

*Error bars denote standard deviation

IPQ - Spatial Presence

IPQ – Experienced Realism

- Highest: Attention Marker
- Lowest: Passthrough
- No significant differences
- Users' sense of spatial presence wasn't affected

*Error bars denote standard deviation

PQ - Experienced Realism

IPQ - Spatial Presence

IPQ – Involvement

- Highest: Attention Marker
- Lowest: Passthrough
- Significant differences detected
- Users' sense of involvement was affected

*Error bars denote standard deviation

Am I Being Watched? Bystander Awareness During Productivity Tasks in Virtual Reality

Noticeability Understandability

Passthrough
 Baseline
 Highest: Text-UI

Lowest: Passthrough

Avatar

Radar

detected

Extremely Difficult/Intrusive

Attention Marker

Significant differences

Difficult/Intrusive

PQ - Experienced Realism

System Usability Scale

- "Highest: 3D Scan" JD-Scan Passthrough
- Lowest: **Baseline**
- No significant differences
- Usability of the notification systems is between good and excellent

*Error bars denote standard deviation

Tasks

Windows Login

Login to windows using username and password followed by pin verification

Change Email Password The user enters his old password (from task 1) and then types a new one 2 times followed by pin verification

Send a Confidential Email

The user sends a confidential email to their co-worker containing a pin code

Login to Paypal The users logs in to Paypal using email and password followed by a security question

Add Address to Amazon The user fills in 5 fields containing personal information

Login to University Portal

The users logs in to the university portal using email, password and matriculation number

Book a Flight The users enters credit card details to book a flight

	٩	
secount Your info Privacy Security Devices		6
Change your password		
A strong password helps prevent unauthorized access to your email account. Current password		
Current Password		
New password		
New Password		
8-character minimum; case sensitive		
Reenter password		
Reenter Password		
Save		
(b) Crystal Principle Constant		

÷	•••		Com	pose M	fail - S	iecret	Mailbo	x				
2		Helvetica			•							
	Enter text											
	(C)											0/30

User Study

Procedure

Before the simulation:

- Demographic

After the simulation:

- Semi-structured interview:
 - Order notification methods by preference
 - General feedback

During the simulation:

- 24 Likert scale questions:
 - How easy or difficult is it to notice the notification?
 - Once you notice the notification, how easy or difficult is it to understand what it stands for?
 - How much of a hindrance was the notification to the overall VR experience?
 - iGroup presence questionnaire (IPQ)
 - System Usability Scale (SUS)

Structure

Nested Realities:

- Simulated Reality:
- Moving train with passengers
- Keyboard and headset visible
- User wears headset to enter the VR
- Virtual Reality:
 - Virtual office
 - 7 Productivity Tasks
 - User goes back to the SR to answer the questionnaire after each task

Demographics

