The Feasibility of High-Performance Message Authentication in Automotive Ethernet Networks

VehicleSec 2023, San Diego

Evan Allen, Zeb Bowden, Randy Marchany, J. Scot Ransbottom Virginia Tech

Issue: Lack of message authentication within in-vehicle networks (IVNs)

- IVNs such as CAN, FlexRay, Automotive Ethernet have no standard message authentication mechanisms
- Means malicious ECUs can spoof messages from other ECUs
 - "Hit the brakes!" ~ from an ECU that shouldn't say that
- We need some way for an ECU to be able to verify the integrity and source of a message.

Threat Model

(Example Architecture)

How to authenticate messages?

- Message Authentication Codes (MACs)
 - Conventional solution from IT world
 - Cryptographic tag appended to message that verifies the integrity and source of the message
- Takes time to compute / verify!

TABLE I. PERFORMANCE REQUIREMENTS FOR VARIOUS CLASSES OF DATA, ADAPTED FROM [3], [13], [23]

Data Class	Throughput (Mbps)	Max. Latency (ms)	Period (ms)
Critical control Normal control Radar Ultrasonic Camera Video* Lidar	$ \begin{array}{c c} 0.5-1 \\ 0.5-1 \\ 0.1-15 \\ 0.01-0.23 \\ \sim 52 \\ \hline 20-100 \end{array} $	0.1 5-50 10 20 33 10	Event driven 5-50 10 20 33 10

^{*30} frames per second, compressed

Question:

Is it possible to do MAC authentication at these speeds?

Existing Work

- Two separate challenges:
 - very low latency & very high throughput
- Could not find any papers that could do <0.1ms latency, >80Mbps speeds in software, though
- Pena et al. achieved <0.1ms latency and >200Mbps speeds with MACsec using an FPGA (hardware)

Gatekeeper Latency Profiling

Profiled one recent authentication proposal

Figure 2: The overview design of GATEKEEPER.

Throughput Issues

- Gatekeeper authors found that their development board couldn't run hashing functions / encryption functions fast enough
- If those aren't fast enough, how could any protocol be fast enough?

Figure 6: Performance of symmetric cipher suites and hash functions on the development board.

Discussion

Is it possible to do MAC authentication at these high speeds?

- Most likely <u>only with dedicated hardware</u> software is not fast enough
- That gets expensive! Especially if every ECU needs it
- Software methods like Gatekeeper still OK for lower-performance applications, like ultrasonic data (<0.23 Mbps, 20ms)

We still need a solution for low-latency, high-throughput data... Okay, now what?

Idea: Reduce need for cryptographic authentication

- How can we stop message spoofing without MACs or cryptography?
- Maybe we can use hardware ports.
 - Usually a bad idea in IT, but vehicle networks are different
- Assumptions:
 - No physical man-in-the-middle
 - DC not compromised ***

Idea: ECUs implicitly trust traffic; domain controller does security work

Because ECUs don't share a common bus...

 ECUs can trust that all incoming messages are from the domain controller

Idea: ECUs implicitly trust traffic; domain controller does security work

Because ECUs don't share a common bus...

- ECUs can trust that all incoming messages are from the domain controller
- Domain controller can trust that messages on a hardware interface are from that ECU
 - (even if the ECU is compromised)

Idea: ECUs implicitly trust traffic; domain controller does security work

- Intra-domain traffic is thus authenticated.
- What about inter-domain traffic?
- Here we can use hardware MACsec
 - Cost-feasible to implement for just a few domain controllers
 - Demonstrated to be fast enough earlier

 Result: DC knows actual sender / receiver of all traffic

Idea: DC can act as firewall given security policy

- Create security policy.
- Define what message types each ECU E may:
 - Send (OUT(E))
 - Receive (IN(E))
- DC blocks traffic violating these rules
- ECUs do no work!

Limitations / Areas for Improvement

- Assumes domain controller (DC) is not compromised (***)
 - Tradeoff for speed and cost
 - Could spend more resources on securing DC
 - Common assumption in other work (e.g., Gatekeeper)
 - How could we mitigate this risk?
- Assumes no physical man-in-the-middle
 - If an attacker had physical access to the vehicle, could just cut brake lines

Future Work

- Flesh out domain controller firewall approach, build prototype
- Investigate performance, limitations
 - Can it satisfy the previous performance requirements?
 - How restrictive can the in / out policies be?
 - How much overhead do they cause?
- Reproduce MACsec benchmark results, determine if it can stay performance compliant on low-cost hardware.
 - Could make MACsec more accessible to manufacturers.

Questions?