CANtropy: Time Series Feature Extraction-Based Intrusion Detection Systems for Controller Area Networks

Md Hasan Shahriar, Wenjing Lou, and Y. Thomas Hou

Virginia Tech, VA, USA

Attack Surface of Modern Vehicles

- 100+ dedicated electronic control units (ECUs)
- Data exchange though controller area networks (CAN) bus
- CAN protocol lacks security requirements (i.e., MAC)
- Hijacked ECUs can lose control of the car
- Example, Jeep hack by Miller and Valasek

Link Type DSRC-Based App Receiver (V2X) Smartphone Passive Keyless Entry Remote Key **TPMS ADAS System ECU** Vehicle Access System ECU Lighting System ECU Engine and Steering and (Interior and Exterior) Transmission Braking ECU ECU

OBD II

USB

Bluetooth

Airbag

ECU

Remote

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Controller Area Networks

CAN IDS fall into these major categories:

- Physical Characteristics-based IDS
 - Uses physical layer attributes (e.g., voltage)
- CAN ID-based IDS
 - Timing/sequence of frame arbitration IDs
- Payload-based IDS
 - Considers the data frame as a string of raw bits
- Signal-based IDS
 - **■** Decodes raw binary bits to time-series signals
 - Uses time series of signal values as inputs

Decoded signals of four consecutive payloads

Motivations

Limitations of Deep Learning based Signal-Level IDS

High Quality and High Volume of Data

Optimized DL Model (Grid-search Approach)

Powerful Computational Platform

Limitations of Feature Extraction-based Signal-Level IDS

Limited Exploration in Feature Functions

Extraction of Unnecessary Features

An Overview of CANtropy

Exploration Phase: Feature Extraction

Exploration Phase: Feature Analysis & Configuration

Configuration Mapping Matrix, C

 f_3

An Overview of CANtropy

Development Phase: Feature Extraction & Model Fitting

An Overview of CANtropy

Deployment Phase: Feature Extraction & Model Testing

Evaluation Setup

Dataset: SynCAN Dataset

Feature Domains: Temporal', 'Statistical', and 'Both'

Evolution Metric: AUROC (Area under the ROC curve)

Baselines: CANet & CANShield

Visualization of Variance Mapping Matrix

Signals

Performance vs Number of Features

Model with all the signal-feature provides the best detection performance.

Model-based on temporal or statistical features only is more susceptible to the variance threshold.

Model accuracy and robustness are enhanced by combining features from both domains.

Attack-wise Performance

Combining features from 'Both' the domains improves the detection of **continuous** and **suppress** attacks.

CANtropy outperforms the baselines in most of the attacks and provides an average AUROC score of 0.992.

Summary of CANtropy

Thanks

Additional Slides

Evaluation | MCEVR

Observation:

- Retaining 99.999% variance during the PCA provides the best representation of the data and maximizes the detection performances (AUROC) of different types of attacks.
- Considering both features in a single detector makes the detection efficient.

Scalability Analysis

- CANtropy inference scalable
 - Feature extraction takes 80 ms per window with all the features
 - The inference only takes 0.52 ms per window for all the features
 - Hence the total upper limit for full interference is 80.52 ms
 - ◆ Which is still under the human perception time of 0.7 sec.
- CANtropy needs to fit the PCA model with the training data
 - Making it lightweight, and easily transferable.

Limitations

- CANtropy considers a step size as the same length of the window
 - We consider a step size of 500 in these evaluation
 - CANet and CANShield considered a step size of 1
 - CANtropy's performance may differ step size of 1
- Feature extraction of CANtropy takes longer time compared to the baselines
 - If the transmission interval CAN bus is around 2m
 - Wait for approximately 40 messages to run the inference again

Attack Model

- Access the CAN bus using:
 - Infotainment, ADAS systems, OBD-II port, etc.
- Turn off any ECU or launch a masquerade attack.

Fabrication attacks

A compromised ECU injects malicious IDs and data

Suspension attacks

A legitimate ECU is turned off/incapacitated

Masquerade attacks

A legitimate ECU is turned off and injects malicious data with its ID

Design Objectives

Effective Data Representation

Extract the most relevant features for an effective learning

Detecting Advanced Attacks

Implement a lightweight IDS to detect a variety of CAN attacks

Near real-time detection with near-zero false positives

- Respond to intrusions with near-zero false-positive rate
- Low inference time for timely attack detection

CANtropy | Feature Extraction & Exploration Algorithms

Algorithm 1 Feature Extraction

```
Input: List of signals \mathcal{S} = [s_1, s_2, \cdots, s_n]

List of features, \mathcal{F} = [f_1, f_2, \cdots, f_m],

Configuration matrix, \mathbf{C} \in \mathbb{R}^{n \times m}, CAN signal dataset, \mathbf{X} \in \mathbb{R}^{t \times n}

Output: Generated dataset, \mathbf{D}

1: Initialize empty 2D dataset \mathbf{D} = [\ ,\ ]

2: for signal s_i \in \mathcal{S} do

3: for feature f_j \in \mathcal{F} do

4: if \mathbf{C}[i,j] == 1 then

5: Generate feature s_i f_j shifting a of window w over \mathbf{X}

6: Add new feature s_i f_j to dataset \mathbf{D}

7: end if

8: end for

9: end for

10: Save new dataset \mathbf{D} for development or deployment phase
```

Algorithm 2 Feature Analysis and Variance Matrix

```
Input: List of signals S = [s_1, s_2, \dots, s_n]
List of features, \mathcal{F} = [f_1, f_2, \cdots, f_m],
Variance threshold var\_th \in \mathbb{R}
CAN signal dataset, \mathbf{X} \in \mathbb{R}^{t \times n}
Variables: Configuration matrix \mathbf{C} \in \mathbb{R}^{n \times m} \leftarrow \mathbf{0}
Output: Variance matrix, \mathbf{V} \in \mathbb{R}^{n \times m}, Configuration matrix, \mathbf{C}
 1: for signal s_i \in \mathcal{S} do
          for feature f_i \in \mathcal{F} do
               Generate feature s_i f_j by shifting a of window w over \mathbf{X}
 3:
               Calculate variance var_{s_i}^{f_j} of s_i f_j, assign it to \mathbf{V}[i,j]
               if V[i,j] > var_{th} then
 5:
                   \mathbf{C}[i,j] = 1
               end if
 7:
          end for
 9: end for
10: Store configuration matrix C for future feature generation
```


Dataset - SynCAN

Description of masquerade attacks in SynCAN dataset

Attack Name	Attack Type	Description
Flooding	Fabrication	Frequently injects high-priority messages.
Suppress	Suspension	Prevent an ECU from transmission.
Plaeau		Broadcasts a constant value.
Continuous	Masquerade	Broadcasts continuously changing values.
Playback		Broadcasts a series of recorded values.

List of Feature Functions

Index	Domain	Feature
1	Statistical	ECDF
2	Statistical	ECDF Percentile
3	Statistical	ECDF Percentile Count
4	Statistical	Histogram
5	Statistical	Interquartile range
6	Statistical	Kurtosis
7	Statistical	Max
8	Statistical	Mean
9	Statistical	Mean absolute deviation
10	Statistical	Median
11	Statistical	Median absolute deviation
12	Statistical	Min
13	Statistical	Root mean square
14	Statistical	Skewness
15	Statistical	Standard deviation
16	Statistical	Variance

Index	Domain	Feature
17	Temporal	Absolute energy
18	Temporal	Area under the curve
19	Temporal	Autocorrelation
20	Temporal	Centroid
21	Temporal	Entropy
22	Temporal	Mean absolute diff
23	Temporal	Mean diff
24	Temporal	Median absolute diff
25	Temporal	Median diff
26	Temporal	Negative turning points
27	Temporal	Neighbourhood peaks
28	Temporal	Peak to peak distance
29	Temporal	Positive turning points
30	Temporal	Signal distance
31	Temporal	Slope
32	Temporal	Sum absolute diff
33	Temporal	Total energy
34	Temporal	Zero crossing rate

Experiments | Time Series Plot of SynCAN Dataset

- Markers indicates the arrival of corresponding CAN message.
- Different CAN IDs has different reporting periods.

Experiments | Reporting Periods of SynCAN

- There are three groups of CAN IDs.
- Reporting periods are around 7, 13, and 22 time steps.

