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Attack Surface of Modern Vehicles

100+ dedicated electronic control units (ECUs)

Data exchange though controller area networks (CAN) bus

CAN protocol lacks security requirements (i.e., MAC) Rebe S
Remote ECU Bluetooth
Hijacked ECUs can lose control of the car L . DSRC-Based
. s < __.-.,|“‘,|lll—~-‘—":::;_-f_.‘.;:_‘\:Receiver (V2X)
Example, Jeep hack by Miller and Valasek i y | \
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https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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Controller Area Networks

CAN IDS fall into these major categories: _
CAN ID Binary Payload CRC | ACK

Physical Characteristics-based IDS (11- bits) (0-8 bytes)

SOF
RTD
IDE
RO
EOF
IFS

B Uses physical layer attributes (e.g., voltage) P DBC file Tee Ll
CAN ID-based IDS «-" { _l/_ “t~a

T~
EngineRPM

B Timing/sequence of frame arbitration IDs
Payload-based IDS Battery Voltage Current Gear

B Considers the data frame as a string of raw bits GPS Latitude ABSEnabled

Signal-based IDS Vehicular Speed

B Decodes raw binary bits to time-series signals

. ] ] ] Decoded signals of four consecutive payloads
B Uses time series of signal values as inputs

www.hackday.com/2013/10/22/can-hacking-the-in-vehicle-network/



Motivations

Limitations of Deep Learning based Signal-Level IDS

¥

-

Optimized DL Model Powerful Computational
(Grid-search Approach) Platform

High Quality and
High Volume of Data

Limitations of Feature Extraction-based Signal-Level IDS

Jl &

Limited Exploration In Extraction of
Feature Functions Unnecessary Features




An Overview of CANtropy

Common Exploration Phase Development Phase Deployment Phase
Feature Analysis and Configuration
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Feature Extraction

Exploration Phase
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Exploration Phase: Feature Analysis & Configuration
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Variance Mapping Matrix, V

Configuration Mapping Matrix, C



An Overview of CANtropy

Common
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Development Phase: Feature Extraction & Model Fitting
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An Overview of CANtropy
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Deployment Phase: Feature Extraction & Model Testing
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Evaluation Setup

Dataset: SynCAN Dataset

Feature Domains: Temporal’, "Statistical', and Both'

Evolution Metric: AUROC (Area under the ROC curve)

Baselines: CANet & CANShield

VZ? VIRGINIA Hanselmann, Markus, et al. "CANet: An unsupervised intrusion detection system for high dimensional CAN bus data.”

Shahriar, Md Hasan, et al. "CANShield: Signal-based Intrusion Detection for Controller Area Networks."
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Visualization of Variance Mapping Matrix
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Heatmap of the Variances of Signal-Feature Pairs
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Some features have high variances for most
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Features
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Performance vs Number of Features

o 500 42 . : : Domain Model with all the signal-feature provides the
> : e ! : —e— Temporal | |hest detection performance.
© 400 = e ' " —4 - Statistical
o - s [ T - . .. Both
S 300 = ; g .
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Ko m I’%%x%ﬂ n [ ] . .................... . . . .
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= : : \,\ o—i K- threshold.

100 1= [ ] n ] ‘

L B : T : : T

1.0 - E Eﬁ.
o 0.9 = . : . Model accuracy and robustness are enhanced
£ ] . =l ¢ - by combining features from both domains.
) m [ n (]
Tosf L

- . : ¢ -
0.7 & . - . .
0.0 0.0025 0.005 0.0075 0.01

Variance Threshold for Feature Selection

N
\ /4 TECH. 13



Attack-wise Performance —+- Temporal —e— Statistical -M- Both

1.00 A k———.:.___.___.qi_——k :
RN : : L~ .
. . ‘ ) 0.98 - N Nyt N ,/4‘/
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domains improves the detection of :DE‘ 006 b
continuous and suppress attacks. |
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Summary of CANtropy

Extensive Feature Exploration

Customized Feature Extraction

Lightweight Detection Model

Provides Comprehensive Defense

Outperform the DL-based Baselines

VIRGINIA
TECH.
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Evaluation | MCEVR

Observation:

Retaining 99.999% variance
during the PCA provides the best

Domain
B Temporal [ Statistical I Both

representation of the data and -
maximizes the detection ., 0.9 -
performances (AUROC) of 832
different types of attacks. < 0.8 - . ‘ A
Considering both features in a - ¢ 8 ¢ ¢ 1*
single detector makes the DIl . . . .
. . 99.9 99.99  99.999  99.9999 99.99999
detection efficient. MCEVR
VIRGINIA

TECH.



Scalability Analysis

CANtropy inference scalable
B Feature extraction takes 80 ms per window with all the features
B The inference only takes 0.52 ms per window for all the features
B Hence the total upper limit for full interference is 80.52 ms
+ Which is still under the human perception time of 0.7 sec.

CANtropy needs to fit the PCA model with the training data
B Making it lightweight, and easily transferable.



Limitations

CANtropy considers a step size as the same length of the window
B We consider a step size of 500 in these evaluation
B CANet and CANShield considered a step size of 1
B CANtropy’s performance may differ step size of 1
Feature extraction of CANtropy takes longer time compared to the baselines
B If the transmission interval CAN bus is around 2m
+ Wait for approximately 40 messages to run the inference again



Attack Model

Access the CAN bus using:

B Infotainment, ADAS systems, OBD-II port, etc.

Turn off any ECU or launch a masquerade attack.

(l Fabrication attacks }

« A compromised ECU injects malicious IDs and data

—| Suspension attacks }

 Alegitimate ECU is turned off/incapacitated

—| Masquerade attacks }

 Alegitimate ECU is turned off and injects malicious data with its ID




Design Objectives

—L Effective Data Representation

» Extract the most relevant features for an effective learning

—L Detecting Advanced Attacks \
* Implement a lightweight IDS to detect a variety of CAN attacks

—L Near real-time detection with near-zero false positives

* Respond to intrusions with near-zero false-positive rate
* Low Inference time for timely attack detection




CANtropy | Feature Extraction & Exploration Algorithms

Algorithm 1 Feature Extraction

Input: List of signals & = [s1, 52, , Sn|

List of features, F = |f1, f2, -, fm],

Configuration matrix, C € R™"*™_ CAN signal dataset, X € R**"
Output: Generated dataset, D

1: Initialize empty 2D dataset D = [ , ]
2: for signal s; € S do
3: for feature f; € F do

4: if Cli,j] == 1 then

5: Generate feature s; f; shifting a of window w over X
6: Add new feature s; f; to dataset D

7: end if

8: end for

9: end for

10: Save new dataset D for development or deployment phase

Algorithm 2 Feature Analysis and Variance Matrix

Input: List of signals & = [s1, 52, , Sn|

List of features, F = |fi, f2, -, fm],

Variance threshold var_th € R

CAN signal dataset, X € R"*"

Variables: Configuration matrix C € R"*™ <+ 0

Output: Variance matrix, V € R"”*™, Configuration matrix, C

: for signal s; € § do
for feature f; € F do
Generate feature s; f; bfy shifting a of window w over X

1

2

3

4 Calculate variance vars’ of s;f;, assign it to Vi, j]
5: if Vi, j| > vary, then

6: Cli,j] = 1

7 end if

8 end for

9: end for

0

10: Store configuration matrix C for future feature generation




Dataset - SynCAN

D: Playback Attack

Description of masquerade attacks in SynCAN dataset -
— 0.8
Attack Name | Attack Type | Description -
. . . = . : . : =)
Flooding Fabrication Frequently injects high-priority messages. S 0.6
Suppress Suspension Prevent an ECU from transmission. B..
< o.
Placau Broadcasts a constant value. ?
1 . . 0.2
Continuous Masquerade | Broadcasts continuously changing values.
Playback Broadcasts a series of recorded values. o
0 250 500 750 1000 1250 1500 1750
Signal Appearances
E: Flooding Attack F: Suppress Attack B: Plateau Attack C: Continous Change Attack
1.0 1.0 = True 1.0 1.0-
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Hanselman et al. "CANet: An unsupervised intrusion detection system for high dimensional CAN bus data." IEEE Access
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List of Feature Functions

Index Domain Feature

] Statistical ECDF

2 Statistical ECDF Percentile

3 Statistical ECDF Percentile Count
4 Statistical ~ Histogram

S Statistical ~ Interquartile range

6 Statistical Kurtosis

7 Statistical Max

8 Statistical Mean

9 Statistical Mean absolute deviation
10 Statistical Median

11 Statistical Median absolute deviation
12 Statistical Min

13 Statistical ~ Root mean square

14 Statistical Skewness

15 Statistical Standard deviation

16 Statistical Variance

Index  Domain Feature

17 Temporal  Absolute energy

18 Temporal  Area under the curve
19 Temporal  Autocorrelation

20 Temporal Centroid

21 Temporal  Entropy

22 Temporal  Mean absolute dift

23 Temporal  Mean diff

24 Temporal  Median absolute diff
25 Temporal  Median diff

26 Temporal  Negative turning points
27 Temporal  Neighbourhood peaks
28 Temporal  Peak to peak distance
29 Temporal  Positive turning points
30 Temporal  Signal distance

31 Temporal  Slope

32 Temporal  Sum absolute diff

33 Temporal  Total energy

34 Temporal  Zero crossing rate




Experiments | Time Series Plot of SynCAN Dataset

QO 0.685
"o 0.680

0.675_

Different CAN IDs has different reporting periods.

Markers indicates the arrival of corresponding CAN message.

Time series plot of different signals for 800 time steps
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Experiments | Reporting Periods of SynCAN

There are three groups of CAN IDs.
Reporting periods are around 7, 13, and 22 time steps.
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