The Network and Distributed System Security Symposium (NDSS) 2023

### A Robust Counting Sketch for Data Plane Intrusion Detection

Sian Kim<sup>1†</sup>, Changhun Jung<sup>1†</sup>, Rhongho Jang<sup>3</sup>\* David Mohaisen<sup>2</sup>, DaeHun Nyang<sup>1</sup>\*

Ewha Womans University
University of Central Florida
Wayne State University

† These two authors contributed equally.

Corresponding authors.

### CONTENTS

I Background and Challenges

■ Contributions of Count-Less

III Analysis and Evaluations

 $\mathbf{W}$  Conclusion



# **CHAPTER** Background and Challenges

### **Intrusion Detection in Networks**

- Network traffic measurement: per-flow statistics are essential
- Gateway approach relies on NFV for scalability

※ [Issue] High operational cost

• In-network computing (INC) approach with programmable switches

※ [Emerging] Advantages: High-speed, high flexibility, low cost

X Three ways for **per-flow measurement**:

(1) hardware-based, (2) sampling-based, and (3) sketch-based approaches

### **Sketch-based Approaches**

- A **compact** data structure to count a large amount of data
- Good estimation accuracy <u>under computation and memory constraints</u>
- Ex. Count-Min Sketch, Elastic Sketch, FCM Sketch etc.



### **Advanced: Cascaded Multi-stage Filtering**

- Data structure design to adapt to Zipfian distribution
- [Core Idea] Cascade multiple sketches for a sequential flow filtering

#### according to their sizes



### **Problem Definition: Traffic Pattern Changes**

#### Flow Size Distribution (FSD)

**Observation 1.** FSD of attack and benign traffic are different **Observation 2.** FSD varies depending on the flow definition

**Observation 3.** FSD also changes over time



Challenge1: Data structure must be robust to various traffic patterns

### Naïve Approach to Adapting to Changing FSD

#### **Reconfiguration of the sketch's data structure**

• Online reconfiguration based on a real-time measured FSD

 $\rightarrow$  Dynamic data structure (e.g., real-time merge of counters)

**% [Issue]** Infeasible for programmable switch

• Offline reconfiguration based on the FSD periodically

 $\rightarrow$  Updating the shape of data structure

**[Issue]** requiring recompile and reload of the entire program

Challenge2: How to adapt to various FSD without reconfiguring data plane switch?

# CHAPTER I Contributions of Count-Less

### **Our Contribution: Count-Less (CL)**

- A robust and accurate network flow measurement tool
  - (1) under both attack and benign traffic scenarios
  - (2) without dynamic adjustment of data structure.
- A novel **encoding algorithm** called *Minimum Update* is designed
  - **flexible** encoding strategy to <u>maximize memory efficiency</u>
- Theoretical proof of the error bound
- Verified robustness with security applications
- Data plane implementation supports in-network flow measurement

### **Data Structure of Count-Less**

- CL consists of **d layers** of counter arrays
- Top layer uses 32-bit counters for large flows
- Reducing counters' size while going down to the bottom layer
- Number of counter per layer with factor *r* 
  - A lower layer array possess r times more counters than its upper layer



### **Encoding Algorithm of Count-Less**

#### **Conservative Update (optimal version)**

- Find a global minimum value among all layers (left figure)
- Update the counters that contain the minimum value (right figure)

#### **Data Plane Issue**

 Conservative Update triggers double-access to the same register, which is restricted by programmable switch.



### **Our Solution: Encoding with Approximation**

#### Minimum Update (approximate version)

- Update occurs with a sequential order, from the lowest to highest layer
- It stores the temporal minimum value (MIN) during the process
- Update happens only when its value is smaller than the current MIN



### **Comparing Encoding Algorithms**





Minimum Update (Count-Less)

**Cascading approach (FCM Sketch)** 

By maximizing counter usage across all layers,

**Count-Less reduces the hash collision rate thus more accurate** 

d1 d2 d3 Decoding Value = 703

d1 d2 d3 Decoding Value = 255+65535+703

### Advant. 1. Count-Less improves memory efficiency

Dataset Description: benign one-minute CAIDA dataset



### Advant. 2. More flows survives

Flow Survival Rate: fraction of flows that are below a certain relative error after decoding

- FSR for Mouse Flow ( $\leq$  255): say survive if the estimated relative error is below 0.1
- FSR for Elephant Flow (>255): say survive if the estimated relative error is below 0.01



# CHAPTER III Analysis and Evaluations

### **Robustness of Count-Less**

Note: Count-Less achieves comparable performance with **Elastic sketch** in large flow-heavy trace (skewness 1.0 and 1.2), **even though Elastic uses** 

dedicated hardware for large flows.

|        |          | Skewness |      |      |       |       |        |        |        |
|--------|----------|----------|------|------|-------|-------|--------|--------|--------|
|        |          | 1.0      | 1.2  | 1.4  | 1.6   | 1.8   | 2.0    | 2.2    | 2.4    |
| Sketch | CL-MU    | 0.01     | 1.48 | 3.52 | 15.14 | 47.97 | 102.38 | 151.41 | 184.69 |
|        | FCM(k=4) | 0.04     | 1.08 | 7.38 | 25.45 | 83.56 | 232.92 | 605.06 | 851.19 |
|        | Elastic  | 0.00     | 0.13 | 4.27 | 19.89 | 78.17 | 163.80 | 198.40 | 208.86 |

Average Relative Error (ARE) varying skewness of traffic's flow size distribution

### **Security Applications Varying Traces**

🔶 CM 🔶 FCM 🔸 Elastic 📥 CL-MU



### **Data Plane Overheads: Comparison**

| Resource Usage | СМ   | CL-MU | FCM   |
|----------------|------|-------|-------|
| Hash Bit (%)   | 2.88 | 3.06  | 4.97  |
| SRAM (%)       | 5.72 | 6.14  | 7.29  |
| ALU (%)        | 4.16 | 6.25  | 16.67 |
| Used stages    | 2    | 5     | 4     |

| Latency (Normalized) | СМ   | CL-MU | FCM  |
|----------------------|------|-------|------|
| Layer-1              | 0.02 | 0.12  | 0.09 |
| Layer-2              | 0.02 | 0.64  | 0.75 |
| Layer-3              | 0.05 | 0.24  | 0.91 |
| Total                | 0.09 | 1.00  | 1.75 |

Data Plane Implementation: Hardware resource usage and added latency in the programable switch

# CHAPTER IV Conclusion



### Conclusion

- Flow size distribution changes by many factors
- Count-Less with a novel Minimum Update strategy
  - It adapts to sudden changes in traffic patterns
  - It fits into the pipeline design of the data plane
- Low latency and high throughput in-network per-flow measurement
- Verified high accuracy and robustness through analysis and experiments



# Thank you





# **Questions?**

ksy60a@ewha.ac.kr

