
Browser Permission
Mechanisms Demystified

Presenter: Kazuki Nomoto*

Author: Kazuki Nomoto*, Takuya Watanabe†, Eitaro
Shioji†, Mitsuaki Akiyama†, and Tatsuya Mori‡§

∗Waseda University, †NTT Social Informatics Laboratories, ‡National
Institute of Information and Communications Technology (NICT) ,

§RIKEN Center for Advanced Intelligence Project

1

Research Overview

• We developed Permium, a framework that automatically
manipulates web browsers and analyzes browser
permission mechanisms.
• Analysis Targets

• 22 types of web browsers

• 4 types of permissions

• We found 191 implementation inconsistencies caused by
browser/OS differences.

• We propose/evaluate attacks and countermeasures.

2

Background: Browser Permission
Mechanism
• Browser permission mechanisms allow browsers to
control the use of cameras, GPS, etc. by websites
(origins).

• Separation mechanism of permission
• By website

• By permission type

• No standard has been defined.

3The origin is different.

Research Outline

• 1. Analysis
• We analyze cross-browser permission implementations.

• We analyze browser permission implementations vs. user
expectations.

• 2. Attack
• We propose/evaluate new attack methods based on findings

from our analysis.

• 3. Countermeasure
• We propose countermeasures.

4

Analysis Overview - Targets

• 22 browsers (5 browsers and 5 OS combinations)

• Four types of permissions

5

X

Chrome Firefox Edge Brave Safari Windows Linux macOS Android iOS

Microphone Camera Geolocation Notification

Analysis Overview - Methodology

• We developed "Permium", a framework that automatically
operates the browser.

• The analysis is divided into two steps.

• Step1. data logging
• We define analysis scenarios.

• Premium automatically operates/logs the browsers.

• Step2. data analysis
• We analyze the logs to reveal the permissions mechanism.

6

Analysis Scenario

• We defined six analysis scenarios, T1~T6.
• T1: Is the permission state set by a user (granted or denied)

correctly reflected by the browser?
• T2: Is the permission state set by a user persistent?
• T3: Is the permission state isolated between the browsing

modes?
• T4: Does clearing browser data and settings erase the

permission state?
• T5: How is the permission state set when the prompt is

ignored?
• T6: Does a permission request from a tab running in the

background pop up in front?

7

PERMIUM DEMO

8

Technical Challenges of the PERMIUM
Framework
- PERMIUM does not use existing browser

auto-manipulation frameworks such as
Selenium, Puppeteer, and Playwright.
- Analysts can analyze third-party

browsers on iOS, such as Chrome and
Firefox.

- PERMIUM provides analysts with the
abstracted operating methods that can
absorb the browser UI differences.
- Analysts can work with the 22 different

browsers by simply writing a test
scenario code.

Analysis Overview - Result

• 191 implementation inconsistencies were found that
could lead to user privacy risks
• Different implementations for different OS/browsers

• Inconsistencies between browser features

• All browsers have implementation inconsistencies.

9

X

Chrome Firefox Edge Brave Safari Windows Linux macOS Android iOS

T2: Is The Permission State Set By A
User Persistent?
We investigate whether the permission states set by the
user persist after the web browser is closed.

10

User selects to
grant/deny permission

Website A Permission request prompt Website A

User restarts browser.
?

?
Requet
permission

How is the permission
status set?

The Result Of Persistence Of The
Permission In Normal Browsing Modes.

Permission
state

Chrome Firefox Edge Brave Safari

W L M A i W L M A i W L M A i W L M A i M i

Granted ●●●●G N N N G●●●●G G N G

Denied ●●●●G N N N G●●●●G G N G

11

●: Permission state persists for all supported resources
N/G: Notification/Geolocation permission state persists.

• In normal browsing modes in Chrome and Edge, all four
analyzed permissions persisted, except for iOS.

• The conditions under which permission states persisted and
the permission types that persisted vary depending on the
browsers.

W : Windows, L : Linux, M : macOS,
A : Android, i :iOS

The Result Of Persistence Of The
Permission In Private Browsing Modes.

• We may have expected that the permission state would
not be persistent.

• iOS web browser, except Safari
• Geolocation permission persisted when a user grants the

permission at least twice. 12

Permission
state

Chrome Firefox Edge Brave Safari

W L M A i W L M A i W L M A i W L M A i M i

Granted G N G G G N

Denied G G G G N
N/G: Notification/Geolocation permission state persists. W : Windows, L : Linux, M : macOS,

A : Android, i :iOS

T3 : Is The Permission State Isolated
Between The Browsing Modes?
• We investigate whether the permission state set by a
user is isolated or shared between the normal and private
browsing modes.

13

Normal browsing modes

Private browsing modes

User selects to
grant/deny permission

Website A Permission request prompt

Requet
permission

Change the browsing modes

Website A

?

?

How is the permission
status set?

The Result Of The Permission State
Isolated Between The Browsing Modes
(From Normal To Private).

• The permission state was not always isolated between
browsing modes in many browsers.
• iOS WebKit browsers except Safari share the Geolocation permission

state
• Safari on macOS shares the Notification permission state
• In Chrome, Edge, and Brave, the denied permission state set in

normal browsing modes was reflected in private browsing modes.
14

Permission
state

Chrome Firefox Edge Brave Safari

W L M A i W L M A i W L M A i W L M A i M i

Granted G N G G G N

Denied ●●●●G N G●●●●G●●●●G N
W : Windows, L : Linux, M : macOS,
A : Android, i :iOS

● : Permission state of all resources is shared
G/N : Geolocation/Notification permission state is shared.

Summary of Analysis Results

• Implementation of permission mechanisms differs widely
from browser to browser and OS to OS.

15

X

Chrome Firefox Edge Brave Safari Windows Linux macOS Android iOS

Analysis

1. Browser implementations

Identify implementation
inconsistencies between
browsers.

16

2. User expectations

Identify inconsistencies
between browser
implementation and user
expectations.

Browers
Implementations

User expectation

Chrome
Implementations

Safari
Implementations

Firefox
Implementations

The Summary Of The User Study

• There is gap between user expectations and browser
implementations.
• User expectations

• 80% of users expect that the permission state is not persistent in private
browsing mode.

• 70~80% of users expect that the permission state is not inherited
between browsing modes.

• Browser implementation
• The permission state is persistent/inherited in many browsers.

• The gaps create the risk that user privacy could be
violated.

17

Research Outline

• 1. Analysis
• We analyze cross-browser permission implementations.

• We analyze browser permission implementations vs. user
expectations.

• 2. Attack
• We propose/evaluate new attack methods based on findings

from our analysis.

• 3. Countermeasure
• We propose countermeasures.

18

Attack Overview

• This study proposed/evaluated two attacks.

• 1. Permission-based User Tracking Attack
• An attacker tracks users by checking the permission state set

for the attacker’s websites and stored in the target’s browser.

• 2. Permission-based Phishing Attack
• An attacker compels the target to mistakenly grant access to a

resource by presenting a fake permission request.

19

Threat Model

• Purpose
• Attackers want to identify users visiting a website.

• Condition
• The attacker has some websites.

• Landing website

• Tracking websites

20

langing-website.example

1.example 2.example 3.example 4.example 5.example 6.example

Attack Procedures

• The procedure for this attack comprises the following
three steps:
• Step 1: the user ID assignment

• Step 2: encoding

• Step 3: decoding

• This attack is not a normal fingerprinting attack.

• This attack actively sets the permission states
corresponding to user IDs for each website.

• Attackers can identify users deterministically.

21

• An attacker assigns a unique ID to each target.
• The user ID is a binary number of 0 and 1.

• The 0 and 1 of the user ID correspond to the permission
statuses "not denied" and "denied".

Step 1. The User ID Assignment

22

User 1 User 2 User 3

Landing website

User 1

U1 = 010011

User 2

U2 = 100101

User 3

U3 = 010100

Step 2: Encoding

• An attacker manipulates the permission states of the
tracking websites, following the ID generated in Step 1.

• The attacker makes the permission state for the websites
to be “denied” by repeatedly requesting permission and
reloading the tracking website.

23
U1 = 010011

1.example 2.example 3.example 4.example 5.example 6.example

0 1 0 0 1 1

Denied Denied Denied

Repeated permission requests and reloads
Permissions are automatically set to denied.

Step 3: Decoding

• An attacker makes the browser access the tracking
websites and checks the permission state on each
tracking website when a user revisits the landing website.

• The attacker can decode the binary sequence
corresponding to the permission states and obtain the ID
of the user; hence, tracking the user is completed.

24

User ? Landing
website

1.example 2.example 3.example 4.example 5.example 6.example

Denied Denied Denied

0 1 0 0 1 1

U1 = 010011

Attack Evaluation

• Targets
• All browsers are targets of the attack, except Firefox.

• Tracking beyond browsing mode is possible.

• Required time
• We measured the time spent tracking 4.3 billion users.
• Result

• 7.0 [s] : Step 2. encoding (+ Step 1. the user ID assignment)
• 2.6 [s] : Step 3. decoding

• Steps 1 and 2 only need to be done once for each user, while Step 3 is done
multiple times each time a user is identified. Therefore, this attack is highly
effective because Step 3 can be done in less than 3 seconds.

25

Chrome Edge Brave Safari

Research Outline

• 1. Analysis
• We analyze cross-browser permission implementations.

• We analyze browser permission implementations vs. user
expectations.

• 2. Attack
• We propose/evaluate new attack methods based on findings

from our analysis.

• 3. Countermeasure
• We propose countermeasures.

26

Countermeasure

• Short/long-term perspective countermeasures are
needed.

• Short-term perspective
• Fix the implementation that this study found.

• Long-term perspective
• Standardization / sharing of best practices.

27

Short-term Perspective

• We reported the issues found to the browser vendor.
• The Brave and Firefox browsers have already fixed some of the

implementations as a result of our report.

• Other browsers are still under consideration.

28

Fixed Under consideration

Firefox

Brave

CVE-2023-23600

Github #14765

Chrome Edge Safari

*Edge : Depends on chromium

Long-term Perspective

• In this study, the vulnerability was fixed after it had been
introduced into the software and could be exploited.

• This cannot be enough to fundamentally prevent future
vulnerabilities from being introduced into the software.

• It is important to identify design issues, standardize, and
share best practices among browser vendors.

29

Proposal Design Implementation Release

Dealing with vulnerabilities before they are included in the system

Vulnerabilities enter

Long-term Perspective

• We publish a timeline of vulnerability reports on our
website.

• We make presentations at conferences.

• We publish the alert information (JVNTA) with
JPCERT/CC.
• https://jvn.jp/en/ta/JVNTA96606604/

• JPCERT/CC is the Japanese Emergency Response Team /
Coordination Center.

30

Summary

• We developed Permium, a framework that automatically
manipulates web browsers and analyzes browser
permission mechanisms.
• We analyzed the permission mechanisms of 22 different web

browsers.

• We found 191 implementation inconsistencies differing
across browsers/OS.

• We propose/evaluate attacks that exploit implementation
inconsistencies.

31

Measurement Result T1

32

• T1: Is the permission state set by a user (granted or
denied) correctly reflected by the browser?

Measurement Result T3

• T3: Is the permission state isolated between the
browsing modes?

33

Measurement Result T4

• T4: Does clearing browser data and settings erase the
permission state?

34

Measurement Result T5

• T5: How is the permission state set when the prompt is
ignored?

35

Measurement Result T6

• T6: Does a permission request from a tab running in the
background pop up in front?

36

Attack Feasibility

37

Attack Feasibility

38

Result of User Study U1

• User Expectations on the Permission Mechanisms.

39

Result of User Study U2

• User Expectations Regarding the Persistence of the Per-
mission State.

40

Result of User Study U3

• User Expectations Regarding Isolation of the Permission
State Across Browsing Modes.

41

Result of User Study U4

• User Expectations for Browsing Data Deletion
Mechanisms.

42

Result of User Study U5

• User Expectations of Browser Behavior when Permission
Requests Are Ignored.

43

Result of User Study U5

• User Expectations of Browser Behavior when Permission
Requests Are Ignored.

44

Result of User Study U6

• User Expectations for the Overlaid Prompt Display.

45

Q&A: What is the Ideal
Implementation?
• It is difficult to determine the ideal implementation definitively.
• It is important that discussions among browser vendors on

appropriate permission implementations take place.

• In our opinion, the following points are important for the
discussion.
• Consistency of implementation and user recognition and expectations
• Consistency of implementation across operating systems within the

same browser
• The minimum implementation necessary to protect user privacy.
• Independence of permissions in private browsing mode

• It is not necessary for all browsers to have identical
implementations.

46

Q&A: What was the reaction of browser
vendors to the vulnerability report?

• The browser vendors responded positively to our report.

• Additionally, some browser vendors responded that fixing
browser implementations can be difficult when they rely
on upstream sources.

• Implemented Fixes
• Firefox

• Notification permissions are shared among browsing modes in Android

• Brave
• Denied permissions are shared from normal browsing modes to private

browsing mode.

47

Q&A: What is the difference between a
permission-based user tracking attack
and general browser fingerprinting?
• A general browser fingerprinting

• The attacker identifies general browser fingerprinting by
obtaining information about the user's browser that cannot be
modified by the attacker.

• A permission-based user tracking attack
• The attacker uses JavaScript to control the user's browser state,

thereby deterministically identifying the user uniquely.

48

The Example of Analysis Scenario

Analysis scenarios when investigating whether the
permission status set in normal browsing mode is also
reflected in private browsing mode.

1. platform.startBrowser(browserName)

2. browser.goToUrl(targetUrl,platformName,"normal")

3. browser.requestPermission(platformName, mode)

4. browser.clickAllow(platformName,mode)

5. browser.openPrivateBrowsing(platformName, "normal")

6. browser.requestPermission(platformName, mode)

7. browser.checkPermissionDialogue(platformName,mode)

49

