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Mobile Services
Fast-growing
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Traditional Authentication

2FA

Multi-factor methods

LOGIN

****

One-time methods

Passwords
Physiological 

Biometrics
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Behavioural Authentication

Challenges:

Scalability
User-spesific

Models
Long Interaction

Time

Large amount
of training data

• Motion Patterns
• Typing
• Touch Gestures
• Navigation
• etc .  

Behavioural Biometrics:

4



Fast and efficient, not 
requiring hand-crafted 

features for model training

Scalable to authenticate
millions of users

Contributions

User-agnostic, no model 
re-training when users 
dynamically changing 

(i.e., joining or leaving)
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User-agnostic, no model 
re-training when users 
dynamically changing 
(i.e., joining or leaving)
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Few-Shot Learning (FSL) 
vs. 

Standard Supervised Learning (SSL)
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Few-Shot Learning (FSL)
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35 Users
Training

7 Users
Testing

3 Users
Validation

Dataset1

------------------------------------------------------------------
1 [Incel et. al DAKOTA IEEE Access 2021]

The dataset contains 45 Users
• 15 sessions per User
• Each session 90 seconds in length 

The dataset contains different
• Genders
• Ages
• Occupations
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Accelerometer Gyroscope MagnetometerTransactions

T1: Account and credit card balance 
T2: Account search
T3: Money transfer
T4: Foreign exchange buy operation
T5: Credit card debt payment

Postures

P1: Phone in hand and sitting
P2: Phone in hand and standing
P3: Phone on the table and sitting

Dataset (Cont.)

Frequently used Functions in mobile banking Data captured through three sensors
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Dataset (Cont.)

Accelerometer Gyroscope MagnetometerTransactions

T1: Account and credit card balance 
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Accelerometer
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Dataset (Cont.)

Accelerometer Gyroscope MagnetometerTransactions

T1: Account and credit card balance 
T2: Account search
T3: Money transfer
T4: Foreign exchange buy operation
T5: Credit card debt payment

Postures

P1: Phone in hand and sitting
P2: Phone in hand and standing
P3: Phone on the table and sitting

Frequently used Functions in mobile banking Data captured through three sensors

Gyroscope
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Dataset (Cont.)

Accelerometer Gyroscope MagnetometerTransactions

T1: Account and credit card balance 
T2: Account search
T3: Money transfer
T4: Foreign exchange buy operation
T5: Credit card debt payment

Postures

P1: Phone in hand and sitting
P2: Phone in hand and standing
P3: Phone on the table and sitting

Frequently used Functions in mobile banking Data captured through three sensors

Magnetometer
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AuthentiSense at High-Level
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Network Training
• Sample Generation Strategy

Pairwise

User A

User A
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Triplet
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Negative
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Shared
Weights

Shared
Weights

CNN1D

CNN1D

CNN1D

Embedding Space

𝑓(𝑎)

Embeddings

𝑓(𝑝)

𝑓(𝑛)

Positive

Anchor

Negative

Positive

Anchor

Negative

Triplet Training

𝐿 𝑎, 𝑝, 𝑛 = max( 𝑓 𝑎 −  𝑓 𝑝 2 −  𝑓 𝑎 −  𝑓 𝑛 2 + 𝛼, 0)+𝛼 𝑓 𝑎 −  𝑓 𝑝 2 ≤  𝑓 𝑎 −  𝑓 𝑛 2
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a
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n

Triplet Training (Cont.)

Easy 
Negatives

 𝑓 𝑎 −  𝑓 𝑝 + 𝛼 ≤  𝑓 𝑎 −  𝑓 𝑛

• Easy Negative:
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Triplet Training (Cont.)

 𝑓 𝑎 −  𝑓 𝑝 + 𝛼 ≤  𝑓 𝑎 −  𝑓 𝑛

• Easy Negative:

 𝑓 𝑎 −  𝑓 𝑛 ≤  𝑓 𝑎 −  𝑓 𝑝

• Hard Negative:

Semi-hard
Negatives

 𝑓 𝑎 −  𝑓 𝑝 ≤  𝑓 𝑎 −  𝑓 𝑛 ≤  𝑓 𝑎 −  𝑓 𝑝 + 𝛼

• Semi-hard Negative:
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Shared
Weights

Embedding
Vectors

Siamese Network Decision 
Network

Input
Pairs

Distance 
Function

CNN1D

E2E Optimization
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Evaluation

Calculation of Equal Error Rate (ERR) Calculation of FAR and FRR on test set

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
𝐹𝑅𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃

𝑇𝑃 − 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑃 − 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑁 − 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑁 − 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Calculation of Equal Error Rate (ERR)
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Calculation of FAR and FRR on test set
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Evaluation(Cont.)

F1-Score for triplet training on test set

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑇𝑃 − 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑃 − 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑁 − 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

n-shot: # enrolment samples to compare with test sample
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is efficient, not requiring hand-crafted features

is scalable, can authenticate millions of users

is user-agnostic, not requiring model retraining

can achieve accuracy in terms of F1-Score up to 97%
and FAR and FRR of 0.023 and 0.057 respectively

can authenticate users only after 1 Sec. of user interaction

• AuthentiSense tackles challenges of existing user authentication methods and:

Conclusion
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Q&A ?
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