Cryptographic Oracle-based Conditional Payments

- Varun Madathil, Sri AravindaKrishnan Thyagarajan, Dimitrios Vasilopoulos, Giulio Malavolta , Lloyd Fournier, Pedro Moreno-Sanchez

Conditional Payments

If Argentina wins the World Cup, I'll send you 1 BTC

Sure, how does it work?

Here this is the transaction.

You just need my signature on this transaction.

But I will sign this only after you win the cup!

Parties are mutually distrustful!

THIS WORK: Enabling secure conditional payments where oracle(s) attest to a real-world outcome

Oracle based conditional payments

The Setting

σ

Attest to outcome : $\overline{\sigma}$ = Signature that Argentina wins the Cup

Oracle based conditional payments Security Guarantees

What if

Verifiabilit y

One-wayness

Distribute trust

Summary of security guarantees

Oracle based conditional payments

Our techniques

A new cryptographic primitive:

Verifiable witness encryption based on Threshold Signatures (VweTS)

Witness Encryption : Consider a language L with relation R

$$x = (vk_1, vk_2, \dots, vk_n, m)$$

$$w = \sigma_1, \sigma_2, \dots, \sigma_k$$

$$\begin{aligned} R &= Verify(vk_1, m, \sigma_1) = 1\\ Verify(vk_2, m, \sigma_2) = 1 \end{aligned}$$

$$Verify(vk_k, m, \sigma_k) = 1$$
$$k \ge \rho$$

Oracle-based Conditional Payments

Multiple Outcomes

Naïve idea: Repeat the above protocol N times

Optimization: Use Lindell-Riva's technique to amortize the cost of cut-and-choose

Performance

Number of outcomes

Security parameter: 128

For a threshold of 4 out of 7 oracles and a payment conditioned on up to 2¹⁵ different real-world event outcomes, the computation overhead is less than 150 seconds and the total communication overhead is below 15 MB. ³⁵

Comparison with smart contracts

Works only with cryptocurrencies that support Turing-complete scripting languages Scalable

Fungibility

High on-chain costs

Smart Contracts	Cryptographic Oracle-Based Contracts	
Yes	No	
No	Yes	
No	Yes	
Yes	No	

Some applications

- Financial Adjudication
- Pre-scheduled payments
- Trading
- Encryption to the future

In Summary

Contribution: A new cryptographic tool VweTS

Application: Oracle-based conditional payments

Implication: Scalable, cheaper, distributed trust, compatibility for cryptocurrency payments

Ground for future work: more complex policies than threshold, further speed ups

Full version: <u>https://eprint.iacr.org/2022/499</u>

Email : <u>vrmadath@ncsu.edu</u>

Varun Madathil Sri AravindaKrishnan Thyagarajan Dimitrios Vasilopoulos

North Carolina State University		NTT Research	IMDEA Software Institute
vrmadath@ncsu.edu		t.srikrishnan@gmail.com	dimitrios.vasilopoulos@imdea.or
Lloyd Fournier	Max Plar	Giulio Malavolta	Pedro Moreno-Sanchez
dependent Researcher		ack Institute for Security and Privacy	IMDEA Software Institute
oyd.fourn@gmail.com		giulio.malavolta@hotmail.it	pedro.moreno@imdea.org

Abstract—We consider a scenario where two mutually distrustful parties, Alice and Bob, want to perform a payment conditioned on the outcome of some real-world event. A semi-trusted oracle (or a threshold number of oracles, in a distributed trust setting) is entrusted to attest that such an outcome indeed occurred, and only then the payment is successfully made. Such oracle-based conditional (ObC) payments are ubiquitous in many real-world applications, like financial adjudication, pre-scheduled payments or trading, and are a necessary building block to introduce information about real-world events into blockchains.

In 11e

In this work we show how to realize ObC payments with provable security guarantees and efficient instantiations. To do this, we propose a new cryptographic primitive that we call *verifiable witness encryption based on threshold signatures (WweTS)*: Users can encrypt signatures on payments that can be decrypted if

conditioning a blockchain payment on a real-world event (certified by some oracle), turns out to be a non-trivial problem. To illustrate the obstacles, consider the toy example where Alice wants to make a payment (denoted by m) to Bob provided an oracle (Olivia) attests to the occurrence of some external outcome (denoted by \bar{m}). As the first step, we require Alice to lock some funds into a shared address with Bob, for a pre-determined amount of time.¹ In blockchain-based cryptocurrencies, this is a standard procedure that can be realized, e.g., in the form of 2-out-of-2 multisig addresses [36]. To complete the transfer, Bob needs Alice's signature on a transaction from the locked address to Bob's address. However,

38

Thank You!