
1

Smarter Contracts:
Detecting Vulnerabilities

in Smart Contracts with Deep Transfer Learning

Christoph Sendner1, Huili Chen2, Hossein Fereidooni3, Lukas Petzi1, Jan König1, Jasper Stang1,

Alexandra Dmitrienko1, Ahmad-Reza Sadeghi3, Farinaz Koushanfar2

1University of Wuerzburg, 2UC San-Diego, 3TU Darmstadt

2

Security Problems of Smart Contracts

3

Smart Contracts Basics

 Smart Contracts

 Software programs hosted by blockchains

 Manage financial assets

 Automatically manage their own accounts

 In charge of significant financial assets

 Public entities

 Our focus is on Ethereum

block nblock n-1 block n+1

Hash of
block n-2

Hash of
block n-1

Hash of
block n

CodeAccount

Smart Contract

CodeAccount

Smart Contract

CodeAccount

Smart Contract

4

Vulnerabilities (selected)
Software

• Attackers may destroy contracts
by calling self-destruct function

Accessible Selfdestruct

• An attacker may jump to an
arbitrary function

Arbitrary Jump

• Attackers abuse constant error
state of a smart contract

Assert Violation

• Integers flip when incremented
over the feasible range

Integer Under/Overflow

Runtime

• Exploits the stack depth limit of
the underlying virtual machine

Callstack Depth

• Calls are unchecked, which may
lead to continued execution

Unchecked Calls

• Attackers abuse external calls
and drain funds

Reentrancy

• Contracts can receive, but not
send, cryptocurrency

Greedy Contracts

Blockchain

• Transaction reordering may lead
to race conditions

Money Concurrency

• Unchecked Calls in a loop may
lead to DoS

DoS with Failed Call

• Dependence on block values
may lead to unpredictable state

Time Dependency

• Generation of randomness in
smart contracts is difficult

Weak Randomness

More info available at Smart Contract Weakness Classification (SWC) Registry: https://swcregistry.io/

Many Vulnerabilities

Difficult Patching

Extensive Security Testing

https://swcregistry.io/

5

Security Testing of Smart Contracts

Limited in scope

Limited detection capability

Poor efficiency

Access to source code

Interoperability issues

Can we combine all tools into one?

6

Idea: One ML-based Tool that Learns from Many

ESCORT

Deployment
Phase

Training
Phase Learn from existing methods how to detect

known vulnerability types

Method n+1

New Vulnerability
Detection MethodsLearn from new tools about newly

discovered vulnerability types

Efficient and effective detection of all
vulnerability types in a single scan

Transfer
Learning
Phase

Method 1

Method 2

Existing Vulnerability
Detection Methods

Method n

…

7

Tackled Challenges

Deep Neural Network

Multi-output architecture

Transfer Learning

Transfer Learning

Effective detection

Detection of multiple vulnerabilities
in one tool

Extensibility to new vulnerabilities

Learning from minority classes

No dependency on source code Bytecode

8

Approach: Multi-output Architecture

Branch Layers Branch Layers

Vulnerability Type 1 Vulnerability Type n

Vulnerability
Branches

Embedding Layer

Representation
Learning Layers

Input LayerBytecode

Feature
Extractor

Feature
Extractor

9

Approach: Transfer Learning

Feature
Extractor

Branch Layers Branch Layers

Vulnerability Type 1 Vulnerability Type n

Embedding Layer

Representation
Learning Layers

Input Layer

New Branch Layers

Vulnerability Type n+1

Bytecode

10

Dataset and Data Labeling

 ~3.6 million Smart Contracts

 4 vulnerability scanning tools

Labeled
Bytecode

Vulnerability
Labels

Geth

Erigon

Google
BigQuery

1

Mythril, Oyente, Vandal, MaianEthereum and Testnets

Plain
Bytecode

Download
Bytecode

2

Bytecode
Preprocessing

3

Labeling
Contracts

Vulnerability
Scanners

4

11

Our Datasets

• 279.726 instances after cleaning up and deduplicating ~3.6 million smart contracts
• Main Dataset is used in initial training (ca. 60.000 samples per vulnerability)
• Extension Dataset is utilized for Transfer Learning (ca. 20.000 samples per vulnerability)
• Underrepresented Dataset is used for Transfer Learning to show applicability for minority classes
• Labeling done using 3 vulnerability scanning tools: Mythril (T1), Oyente (T2), Vandal (T3)

80% training set
10% validation set
10% test set

12

Evaluation of Model and Transfer Learning

 We can detect all 11 vulnerabilities using single scan
 Efficient inference: scanning the smart contract in less then 0.2 sec (with GPU)

Metrics

Initial Vulnerability Classes
Transfer Learning

Vulnerability Classes

C
al

ls
ta

ck
D

ep
th

(T

2
)

M
o

n
ey

C

o
n

cu
rr

en
cy

(T

2
)

A
ss

er
t

V
io

la
ti

o
n

 (
T1

)

R
ee

n
tr

an
cy

(T

3
)

U
n

ch
ec

ke
d

C

al
ls

 (
T3

)

Ti
m

e
D

ep
en

d
en

cy

(T
1

)

D
o

S
w

it
h

 F
ai

le
d

C

al
l (

T1
)

In
te

ge
r

U
n

d
er

/O
ve

rf
lo

w
 (

T1
)

A
cc

es
si

b
le

Se

lf
d

es
tr

u
ct

(T
1

)

A
rb

it
ra

ry
 J

u
m

p

(T
1

)

W
ea

k
R

an
d

o
m

n
es

s
(T

1
)

Precision 0.92 0.92 0.96 0.93 0.94 0.98 0.88 0.97 0.94 0.97 0.95
Recall 0.97 0.93 0.98 0.94 0.97 0.99 0.97 0.88 0.99 0.94 0.94
F1 score 0.98 0.97 0.99 0.97 0.98 0.99 0.94 0.95 0.98 0.97 0.96
False Positive Rate 0.02 0.02 0.01 0.02 0.02 0.01 0.07 0.02 0.03 0.01 0.02

False Negative Rate 0.03 0.07 0.02 0.06 0.03 0.01 0.03 0.12 0.00 0.06 0.06

13

Ground Truth Analysis

Metrics

M
o
n
ey

C
o
n
cu

rr
en

cy

R
ee

n
tr

an
cy

U
n
ch

ec
k
ed

 C
al

ls

T
im

e
D

ep
en

d
en

cy

In
te

g
er

 U
n
d
er

/O
v
er

fl
o
w

Underlying tool Oyente Vandal Vandal Mythril Mythril

Positive samples 8 64 150 10 21

F1 score tools 0.96 0.53 0.47 0.89 0.83

F1 score ESCORT 0.96 0.73 0.31 0.90 0.88

• Studied thousands of security audits

• 373 available, compilable, and relevant samples

14

Conclusion

 We presented DNN-based vulnerability detection approach for smart
contracts

 ESCORT is the first framework extendable to new vulnerability types

 It has good effectiveness across different vulnerability classes

 It operates directly on bytecode, yet independent from decompilers

 It has superior performance during inference time

 Future work

 Investigating the effectiveness of transfer learning with less training data

 Localization of vulnerabilities in bytecode

