REDsec: Running Encrypted Discretized Neural Networks in Seconds A Fully Homomorphic Approach

> Lars Wolfgang Folkerts, Charles Gouert, Nektarios Georgios Tsoutsos



### **Problem Statement**

Machine Learning as a Service









### **Problem Statement**

Machine Learning as a Service







### **Problem Statement**

Machine Learning as a Service



3



Traditional (e.g. AES)



Privacy

#### **Motivation**





Traditional (e.g. AES)



Privacy

#### **Motivation**

5





Traditional (e.g. AES)



Privacy

#### **Motivation**

#### Homomorphic Cryptography



Shallow Problems

6

Slow



Limited Usability

























- Encrypt: Plaintexts become large polynomials
- Added noise guarantees security
- Noise growth bounds computation





- Encrypt: Plaintexts become large polynomials
- Added noise guarantees security
- Noise growth bounds computation





- Encrypt: Plaintexts become large polynomials
- Added noise guarantees security
- Noise growth bounds computation





- Encrypt: Plaintexts become large polynomials
- Added noise guarantees security
- Noise growth bounds computation
- Bootstrapping mitigates noise
  - Allows for *unbounded* arithmetic
  - High latency





## **REDsec Bootstraps Only When Needed**

- Noise auto-tuning
  - Noise grows predictably
  - Pinpoint bootstrapping locations on first inference
  - 32x improvement





## **Discretized NNs 101**



## **FHE-Friendly Operations**

Convolution **Fully Connect** Efficient **Multiplication Bridging** To Integer Integer Addition Data Reuse



## **FHE-Friendly Operations**





# **FHE-Friendly Operations**





## Multi-GPU Acceleration on CUDA



## Summary of REDsec Contributions





BYON Framework



Bidirectional Bridging



Integer Addition





Binary Activations





# **Experimental Evaluation**

MNIST 1024 Neuron Fully Connected Layers



Cifar10 BinaryNet Architectures



ImageNet Binary AlexNet



2.3 Million Multiply-Adds3.6 seconds3055x faster<sup>1</sup>

70 Million Multiply-Adds 3.8 minutes 11790x faster<sup>1</sup> 841 Million Multiply-Adds 1.6 hours 12166x faster<sup>1</sup>

<sup>1</sup> Neurips 2019







#### **CPU Comparisons to SoTA**





#### **GPU** Comparisons to SoTA





## Download REDsec today!

https://github.com/TrustworthyComputing/REDsec



folkerts@udel.edu

