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Motivation
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Our Approach: REDsec
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Highlights
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Example scenario
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FHE 101

• Encrypt: Plaintexts become large polynomials
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FHE 101

• Encrypt: Plaintexts become large polynomials
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• Added noise guarantees security

• Noise growth bounds computation

• Bootstrapping mitigates noise
• Allows for unbounded arithmetic
• High latency



REDsec Bootstraps Only When Needed

• Noise auto-tuning

– Noise grows predictably

– Pinpoint bootstrapping locations on first inference

– 32x improvement
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Discretized NNs 101
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FHE-Friendly Operations
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Multi-GPU Acceleration on CUDA
Lots of parallelism!!
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Summary of REDsec Contributions
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Experimental Evaluation
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MNIST

1024 Neuron Fully 

Connected Layers

2.3 Million Multiply-Adds

3.6 seconds

3055x faster1

Cifar10

BinaryNet Architectures

70 Million Multiply-Adds

3.8 minutes

11790x faster1

ImageNet

Binary AlexNet

841 Million Multiply-Adds

1.6 hours

12166x faster1

1 Neurips 2019



Impact of REDsec optimizations
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CPU Comparisons to SoTA
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GPU Comparisons to SoTA
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Download REDsec today!
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https://github.com/TrustworthyComputing/REDsec

folkerts@udel.edu


