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Nearly 70% of companies

lost 6% of revenue 

bot-driven account fraud
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Clean Cookie/Change IP
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Fake fingerprint
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Problem Statement
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Phase II: Follow-up Attacks
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Attack Type
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% Benign Account

Take

Over

Fraud Fake 

Account

Anonymous

Scraping

Logged-in

Scraping

Gift card

Cracking

Rest. A 55.1 34.5 3.9 3.4 - <0.1 3.1

Bank A 99.8 0.2 - - - - -

Bank B 46.4 52.9 <0.1 0.7 <0.1 - -

Bank C 86.8 8.7 4.0 0.1 <0.1 0.4 -

Finance A 75.5 24.5 - - - - -

Finance B 98.7 0.1 - - 0.5 0.6 -

Finance C 77.8 22.2 - <0.1 - - -

Shop A 91.4 1.2 7.3 0.1 - <0.1 <0.1

Shop B 48.4 0.2 1.0 - 22.5 27.8 <0.1

Airline A 79.4 0.1 - <0.1 2.6 17.9 <0.1

Airline B 80.7 9.4 - - 3.9 6.1 -

ISP A 99.8 0.2 <0.1 - - - -

ISP B 99.5 0.5 - - - - -

ISP C 86.8 13.1 - <0.1 - 0.1 -
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Dataset
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Collected 36 billion HTTP(s) requests
Between January 2021 and June 2021
Based on 14 websites: 
 15.3 billion (42.5% of the total) adversarial 
 20.7 billion (57.5% of the total) benign
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1. User Agent
2. Historical timestamp
3. Plugins
4. Font list
5. Canvas image
6. GPU vendor and renderer
7. Screen resolution
8. devicePixelRatio
…
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Generative Tool Analysis

1. Scripting tools
Simple applications (e.g., written in Python)
Send HTTP requests to target websites

2. Emulated browsers
Headless browsers, extensions, tailor-made browsers
Driven by automated tools like Selenium

3. Virtual machines
Combination with emulated browsers
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Generative Tool Analysis
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Attack Type Attack tools percentage

Scripting Browsers VM

Account Takeover 82.4 15.5 0.3

Fake Account 49.2 50.6 0.1

Fraud 30.0 69.6 0.4

Scraping 93.4 6.6 <0.1

Gift card Cracking 97.5 2.2 0.3

Choose different tools according to the difficulty of operation
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Generative Strategy Analysis

1. Keep
Keep the original value
User Agent Requests

2. Block
Disable or can not support
Browser fingerprint NULL-NULL-NULL-NULL

3. Mimic
Replace to another device’s value

4. Randomize
Add noise or modify the value
WebGL render NVIDIA GTX 1081
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Adversarial Generative Strategies

Scripting tools are the most popular in practice due to its high 
performance.

33

Tools Adversarial Strategy %Request %FP #Req per FP

Scripting

Keep tool’s fingerprints 3.1% <0.1% 155,552.6

Mimicking benign fingerprints 

disabling JavaScript

77.6% 7.2% 657.5



Adversarial Generative Strategies

“Randomize” and “Block” are the most popular strategies for emulated 
browser tools. 34

Tools Adversarial Strategy %Request %FP #Req per FP

Browsers

Mimic 1.0% 9.0% 7.1

Mimic+Block 0.8% 3.5% 14.9

Mimic+Block+Randomize 0.1% 0.2% 31.5

Mimic+Randomize 0.2% 1.2% 8.0

Keep 2.4% 0.4% 348.6

Block 3.9% <0.1% 5,151.5

Block+Randomize 9.0% 60.3% 9.2

Randomize 0.1% 0.1% 105.3

Grey 1.2% 7.2% 10.3



Adversarial Generative Strategies

“Mimic” is less popular probably because adversaries need to obtain a 
large database of benign browser fingerprints. 35

Tools Adversarial Strategy %Request %FP #Req per FP

Browsers

Mimic 1.0% 9.0% 7.1

Mimic+Block 0.8% 3.5% 14.9

Mimic+Block+Randomize 0.1% 0.2% 31.5

Mimic+Randomize 0.2% 1.2% 8.0

Keep 2.4% 0.4% 348.6

Block 3.9% <0.1% 5,151.5

Block+Randomize 9.0% 60.3% 9.2

Randomize 0.1% 0.1% 105.3

Grey 1.2% 7.2% 10.3



Generative Strategies 
Credential Stuffing Case Study

The Attacker gets thousands of account names and passwords.

Step 1: the Attacker builds a dataset linking the fake browser 
fingerprint and account.
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system.
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Generative Strategies 
Credential Stuffing Case Study

The Attacker gets thousands of account names and passwords.

Step 1: the Attacker builds a dataset linking the fake browser 
fingerprint and account.
Step 2: The Attacker chooses a few test accounts to detect the defense 
system.
Step 3: The Attacker deploys the account take over attack.
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Statistical Analysis

40

Feature Name Kullback-Leiber Divergence

Adv. || Benign Benign || Benign Adv. || Adv.

User-Agent 1.6±1.2 0.8±1.8 1.9±1.6

Timestamp 4.2±5.6 0.5±0.6 2.0±1.5

Plugins 2.1±1.9 0.4±0.3 1.6±1.3

Font list 2.2±1.5 0.8±1.8 1.9±1.5

Canvas Image 2.7±1.5 0.9±1.9 1.9±1.5

Vendor + Renderer 5.7±2.8 0.8±1.7 2.5±2.5

Screen Resolution 5.3±3.0 0.4±0.3 2.2±1.5

devicePixelRatio 5.7±4.9 0.9±1.6 2.4±2.5

IP 1.7±0.9 0.4±1.7 1.6±2.3

ASN 3.6±1.5 2.0±1.9 3.0±1.4

FP 3.8±1.9 0.5±0.5 0.2±0.6

FP + IP + ASN 2.6±2.0 0.1±0.2 0.01±0.1

The K-L divergence
Adv./ Benign >> Adv./Adv.
Adv./ Benign >> Benign/Benign
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Feature Name Kullback-Leiber Divergence

Adv. || Benign Benign || Benign Adv. || Adv.

User-Agent 1.6±1.2 0.8±1.8 1.9±1.6

Timestamp 4.2±5.6 0.5±0.6 2.0±1.5

Plugins 2.1±1.9 0.4±0.3 1.6±1.3

Font list 2.2±1.5 0.8±1.8 1.9±1.5

Canvas Image 2.7±1.5 0.9±1.9 1.9±1.5

Vendor + Renderer 5.7±2.8 0.8±1.7 2.5±2.5

Screen Resolution 5.3±3.0 0.4±0.3 2.2±1.5

devicePixelRatio 5.7±4.9 0.9±1.6 2.4±2.5

IP 1.7±0.9 0.4±1.7 1.6±2.3

ASN 3.6±1.5 2.0±1.9 3.0±1.4

FP 3.8±1.9 0.5±0.5 0.2±0.6

FP + IP + ASN 2.6±2.0 0.1±0.2 0.01±0.1

Adversarial fingerprint  
Good at User-Agent, Plugin, Font list

Statistical Analysis
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Feature Name Kullback-Leiber Divergence

Adv. || Benign Benign || Benign Adv. || Adv.

User-Agent 1.6±1.2 0.8±1.8 1.9±1.6

Timestamp 4.2±5.6 0.5±0.6 2.0±1.5

Plugins 2.1±1.9 0.4±0.3 1.6±1.3

Font list 2.2±1.5 0.8±1.8 1.9±1.5

Canvas Image 2.7±1.5 0.9±1.9 1.9±1.5

Vendor + Renderer 5.7±2.8 0.8±1.7 2.5±2.5

Screen Resolution 5.3±3.0 0.4±0.3 2.2±1.5

devicePixelRatio 5.7±4.9 0.9±1.6 2.4±2.5

IP 1.7±0.9 0.4±1.7 1.6±2.3

ASN 3.6±1.5 2.0±1.9 3.0±1.4

FP 3.8±1.9 0.5±0.5 0.2±0.6

FP + IP + ASN 2.6±2.0 0.1±0.2 0.01±0.1

Adversarial fingerprint  
Bad at Timestamp, vendor/renderer, 
Screen resolution, devicePixelRatio

Statistical Analysis



Adversarial fingerprints have more empty values compared with 
benign. 43

Feature Name Empty Rate %

Benign Adv.

User-Agent <0.1 <0.1

Timestamp 2.1 64.4

Plugins 4.4 46.3

Font list 11.8 50.1

Canvas Image 4.5 46.6

Vendor + Renderer 1.4 86.2

Screen Resolution 0.1 43.1

devicePixelRatio 0.0 82.4

IP 0.0 0.0

ASN 0.0 0.0

FP 0.0 <0.1

FP + IP + ASN 0.0 0.0

Statistical Analysis



Unique browser fingerprint
1.6% shared, 8.1% are purely adversarial, 90.3% purely benign
 Fake dataset is small 
 Create a lot of nonexistent values
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Statistical Analysis



Benign fingerprints often evolve over time, while adversarial ones 
mostly stay stable.
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Statistical Analysis
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Conclusion

--> First billion-scale measurement study of browser fingerprints

(i) adversaries are adopting various tools and strategies to generate 
adversarial fingerprints.
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Conclusion

--> First billion-scale measurement study of browser fingerprints

(i) adversaries are adopting various tools and strategies to generate 
adversarial fingerprints.

(ii) adversarial fingerprints are significantly different from benign ones 
in many metrics.
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Conclusion

--> First billion-scale measurement study of browser fingerprints

(i) adversaries are adopting various tools and strategies to generate 
adversarial fingerprints.

(ii) adversarial fingerprints are significantly different from benign ones 
in many metrics.

(iii) adversarial fingerprints vary across different attack types.
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Thanks
https://github.com/bfpmeasurementgithub/browser-fingeprint-

measurement

buaasniper@gmail.com
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https://github.com/bfpmeasurementgithub/browser-fingeprint-measurement

