
Automata-Based Automated 
Detection of State Machine Bugs in 

Protocol Implementations



Introduction

• Work done as part of the SSF aSSIsT project

– Goal: Develop techniques to automatically detect bugs and 
vulnerabilities in network protocol implementations.

– Method: Protocol State Fuzzing (a.k.a. Model Learning).

This paper:

• Presents a general, automated, black-box technique to detect 
state machine bugs in protocols starting from:

1. a state machine model of the implementation;

2. a catalogue of bug patterns for the protocol.

• Evaluates it on SSH servers and DTLS servers and clients.



Datagram TLS (DTLS)

Test of Time

Award Winner

NDSS 2020



DTLS Handshake



SUT 🔨

Model Learning (🔨) infers 
state machine automatically

👤

specification

/
model 

checker

ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!



SUT 🔨

Model Learning infers 

state machine automatically

specification

ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!

JSSE Server

 124 states!

 approximate!

Manual Analysis
 Is time-consuming

 Requires expertise

 Can miss bugs



SUT 🔨
ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!

JSSE Server

 124 states!

 approximate!

Automatic Analysis

Bug Detector

(Model Checker)



Bug Patterns Encoded as DFAs

captures sequences without 

client Certificate ending in a server ChangeCipherSpec

all “other”

symbols
set subtraction



The Missing Certc Bug Pattern

Allows for

renegotiations



Technique in a Nutshell

Bug Pattern 

∩asDFA

=

Generate and 
Validate Seq. 

validated bug sequences

Bug 
Detector

SUT Model



no reply

parameterization

multiple 
messages

client/serv
er

Mealy machine 
model of Java 

Server (pruned)

7 handshake-completed state



7 handshake-completed state

Mealy machine model 
of Java Server (pruned 

and colored)

Vulnerabilities

in red

Valid handshake

path in blue



Missing Certc

Missing 
CertVer

CKE before Certc

CertVer before CKE

7



Bug Detection Framework

Test 
Harness

Bug 
Detector

HelloVerifyRequest

ClientHello

validated bug sequences

bug 
pattern

catalogue

SUT Model

ClientHello

HelloVerifyRequest
LearnerSUT

Needed

infrastructure

Necessary

input

Necessary

input



Assembling a Bug Catalogue

spec.

Missing Certc

CVE-2020-
2655

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2655


Invalid Handshake
(client)

all “other”

server symbols

all “other”

client symbols



Evaluation Setup

 DTLS servers (18 bug patterns)

 DTLS clients (16 bug patterns)

 SSH servers (16 bug patterns)

 24 new bug patterns, largely owing to three general bug patterns

 Specific bug patterns are small (all less than 10 nodes)

 Models generated for all SUTs (two day learning time bound)

 Test harness/learning tools: DTLS-Fuzzer[1] and SSH-Mapper[2]

 SUTs: test programs for nine DTLS and three SSH libraries, 
new versions and (for DTLS) versions used in prior work. 

[1]: P. Fiterău-Broştean, B. Jonsson, K. Sagonas and F. Tåquist, "DTLS-Fuzzer: A DTLS Protocol State Fuzzer," IEEE Conference on Software Testing, Verification and 
Validation (ICST 2022), pp. 456-458, doi: 10.1109/ICST53961.2022.00051.

[2]: https://hdl.handle.net/2066/184275



Evaluation Results (Nutshell)

 Detected and validated automatically all bugs found 
in prior work on DTLS [1] and SSH [2].

 Detected new bugs (incl. those prior work missed) 
and new vulnerabilities in Java clients.

 All but one bug were validated successfully.

 All bugs were reported to developers
→ fixes in four libraries.

[1] Fiterau-Brostean, P., Jonsson, B., Merget, R., De Ruiter, J., Sagonas, K., and Somorovsky, J. (2020). Analysis of DTLS implementations using protocol state fuzzing. 
In 29th USENIX Security Symposium (USENIX Security 20) (pp. 2523-2540). 

[2] Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., and Verleg, P. (2017). Model learning and model checking of SSH implementations. 
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (pp. 142-151).



Results on DTLS Servers

🔧 Bug patterns found with our systematic approach.

Blue bug patterns are for new (types of) bugs.

🔧🔧🔧

🔧🔧🔧

🔧🔧🔧



🔧 Bug patterns found with our systematic approach.

Blue bug patterns are for new (types of) bugs.

🔧
🔧
🔧

🔧

🔧🔧🔧
🔧

🔧🔧

🔧
🔧
🔧
🔧

🔧
🔧🔧

🔧🔧🔧

Results on DTLS Clients



Quantitative Measurements for 
DTLS Client Experiments

Our technique:

 Handles large models (e.g., 387 states for OpenSSL) 

 Given reasonably accurate models (after two days)

– Successfully validates all bugs (one test/bug)

– Finishes in under one minute (even when 10 bugs are 
detected)

 Works reasonably well even with inaccurate models

– Detects fewer bugs

– Needs more time/tests to validate them



Read the Paper for

 More tables and experiments.

 How to systematically assemble a bug 
pattern catalogue.

 Application and evaluation on SSH Servers.

 Related work.

 Information about the paper's artifact.



In Summary


