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• Prevent illegal redistribution
• Protect data privacy

2



Techniques 

• Database Fingerprinting
• Imperceptible 

• Prevent illegal redistribution

• Identify source of data leakage

• Hold the traitor(s) liable for redistribution

• Differential Privacy (DP)
• Obfuscate individuals’ data

• Defend against adversarial inference
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Challenges

• Orthogonal objectives
• Liability via fingerprinting requires adding different noises to all copies 

i.e., recipients receive different copies of DBs

• Privacy via data sanitization requires adding noise once

i.e., recipients can receive the same copy of DB

• Both fingerprinting and DP compromise DB utility

• Sequential approach (fingerprinting followed by DP) is suboptimal

• Need a unified scheme to maintain DB utility

Privacy-Preserving DB Fingerprinting

• Prevent illegal redistribution
• Protect data privacy
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Privacy-Preserving DB Fingerprinting
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Definitions

• Relational DB
• A collection of 𝑇-tuples, each is an individual

• Each record has an immutable pseudo-id, i.e., primary key

• Neighboring relational DB 

• Two DBs differ only by one entry (an attribute of a single individual)

• Sensitivity of relational DB

• The maximum change of an entry

• 𝜖-entry-level DP:
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Intermediate scheme: bit-level randomization

• Design principle

• Fingerprinting schemes performs XOR between insignificant bits of data w. binary marks

• Random: selection of bits and value marks 

• The randomness can be leverage to achieve privacy

• A bit-level randomization scheme pseudorandomly selects some bits of data 
entries and changes their values by XORing them with random binary marks, 
𝐵, and 𝐵~Bernoulli(𝑝)

Theorem: Given 𝑅 with Δ, bit-level randomization preserves 

𝜖-entry-level DP if it marks last 𝐾 = log2Δ + 1 bits, 𝑝 =
1

𝑒𝜖/𝐾+1
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𝜖-entry-level DP fingerprinting

• Collect all fingerprintable bits

𝑁: # of rows, 𝐾𝑡: # of bits to represent attribute 𝑡, 𝐾 = log2Δ + 1

• Key steps
• Generate the fingerprint (binary bit-string) of a SP using Hash function

• Fingerprint a bit in 𝒫 (i.e., 𝐫𝑖[𝑡, 𝑘]⨁𝐵) if a specific condition holds

The condition is carefully designed such that Pr 𝐵 = 1 =
1

𝑒𝜖/𝐾+1
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Theoretical analysis: associating privacy, 
fingerprint robustness, DB utility 

Closed form association between privacy (𝜖), randomization (𝑝),

robustness (against random flipping, subset, correlation attacks),

and DB utility (accuracy, statistics, e.g., marginal/joint distribution)
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Cumulative privacy loss due to multiple sharing

• Practical concern of DP
• Privacy degrades linearly if the same statistics are repeatedly shared 

• The same is true for repeatedly sharing a DB with multiple SPs

• Resort to Sparse Vector Technique (SVT)

• Only releases a noisy result when it is beyond a noisy threshold

• Pays the cost of privacy only for queries satisfying a certain condition, i.e.,

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 DB + 𝑛𝑜𝑖𝑠𝑒1 ≥ Γ + 𝑛𝑜𝑖𝑠𝑒2
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Cumulative privacy loss control via SVT

• Design principle
• For 𝐶 SPs asking for the DB

• Only share fingerprinted copies with certain privacy and robustness requirements

• Requirements on privacy and robustness can be quantified via DB utility

Consider 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 DB = ℳ 𝐑 − 𝐑 1,1

Associate with privacy (𝜖), randomization (𝑝), and robustness
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Share fingerprinted DB with 𝐶 SPs via SVT

• Key steps:
• Generate a fingerprinted copy, ℳ(𝐑), with privacy budget 𝜖

• Sample two Laplace noises 𝜇~Lap(
Δ

𝜖2
) and ρ~Lap(

Δ

𝜖3
)

• Only share ℳ(𝐑) if ℳ 𝐑 −𝐑
1,1

+ 𝜇 ≥ Γ+ ρ

Theorem: Preserve is (𝜖0,𝛿0)-entry-level DP.
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Experiments 

• Two DBs
• Nursery school application: 12,960 records, 8 categorical attributes, 4 classes

• Census: 32,561 records, 14 discrete or categorical attributes, 2 classes

• Attributes are encoded as integers before fingerprinting

• Baselines

Hu et al., “Towards a privacy protection-capable noise fingerprinting for numerically aggregated data”, Computers & Security.
Li et al., “Fingerprinting relational databases: Schemes and specialties”, IEEE TDSC. 13



Experiments 

• Use 128 bits for fingerprint and consider 50% random bit flipping attack

• 𝑥-axis: accuracy of fingerprinted DB

• 𝑦-axis: match of extracted fingerprint from compromised DB

Nursery Census
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Experiments 
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Conclusions

• Developed the first privacy-preserving DB fingerprinting scheme

• Connect privacy, fingerprint robustness, and DB utility 

• Use SVT to control cumulative privacy loss

• Future work
• Mitigate correlation attacks

• Improve utility by utilizing data distribution

• Defend against membership inference attack Contact: Tianxi Ji
tiji@ttu.edu
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Entry-level DP v.s. DP

• All entries in DB satisfying 𝜖-entry-level DP are naturally 𝜖-DP for DB

• Privacy amplification occur when 𝜖′-DP holds for DB and 𝜖′ < 𝜖
• Subsampling

• Shuffling 
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DB utility: SQL query
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Collusion attack

• Malicious SPs combine their versions of fingerprinted DBs to forge a 
pirated copy with the hope that none of them can be traced back

• Achieve collusion-resistant, privacy-preserving fingerprinting by 
leverage randomness of Tardos code 
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Application on Genomic DB

https://github.com/xiutianxi/ldp_genomic_fp 21


