Privacy-Preserving Database Fingerprinting

Tianxi Ji¹, Erman Ayday², Emre Yilmaz³, Ming Li⁴, Pan Li² ¹Texas Tech University, ²Case Western Reserve University, ³University of Houston-Downtown, ⁴University of Texas at Arlington

NDSS 2023, San Diego, CA, USA

Techniques

- Database Fingerprinting
	- Imperceptible
	- Prevent illegal redistribution
	- Identify source of data leakage
	- Hold the traitor(s) liable for redistribution

- Differential Privacy (DP)
	- Obfuscate individuals' data
	- Defend against adversarial inference

Challenges

- **Prevent illegal redistribution**
- **Protect data privacy**
- Orthogonal objectives
	- Liability via fingerprinting requires adding different noises to all copies i.e., recipients receive **different** copies of DBs
	- Privacy via data sanitization requires adding noise once i.e., recipients can receive the **same** copy of DB
- Both fingerprinting and DP compromise DB utility
	- Sequential approach (fingerprinting followed by DP) is suboptimal
- Need a **unified** scheme to maintain DB utility

Privacy-Preserving DB Fingerprinting

Privacy-Preserving DB Fingerprinting

Definitions

- Relational DB
	- A collection of T -tuples, each is an individual
	- Each record has an **immutable** pseudo-id, i.e., **primary key**
- Neighboring relational DB
	- Two DBs differ only by one entry (an attribute of a single individual)
- Sensitivity of relational DB
	- The maximum change of an entry
- ϵ -entry-level DP: $Pr[\mathcal{M}(\mathbf{R}) = S] \leq e^{\epsilon} Pr[\mathcal{M}(\mathbf{R}') = S]$

 $\mathbf{R}, \mathbf{R}' \in \mathcal{D}, \mathcal{S} \in \text{Range}(\mathcal{M}), \epsilon > 0$

Intermediate scheme: bit-level randomization

• Design principle

- Fingerprinting schemes performs XOR between insignificant bits of data w. binary marks
- Random: selection of bits and value marks
- The randomness can be leverage to achieve privacy
- A bit-level randomization scheme pseudorandomly selects some bits of data entries and changes their values by XORing them with random binary marks, *B*, and $B \sim$ Bernoulli (p)

Theorem: Given R with Δ , bit-level randomization preserves

 ϵ -entry-level DP if it marks last $K = \lfloor \log_2 \Delta \rfloor + 1$ bits, $p =$ 1 $e^{\epsilon/K}+1$

ϵ -entry-level DP fingerprinting

• Collect all fingerprintable bits

 $\mathcal{P} = \{r_i[t, k]|i \in [1, N], t \in [1, T], k \in [1, \min\{K, K_t\}]\}\$

N: # of rows, K_t : # of bits to represent attribute t , $K = \lfloor \log_2 \Delta \rfloor + 1$

- Key steps
	- Generate the fingerprint (binary bit-string) of a SP using Hash function
	- Fingerprint a bit in $\mathcal P$ (i.e., $\mathbf r_i[t,k]\oplus B$) if a specific condition holds

The condition is carefully designed such that $Pr[B = 1] =$ 1 $e^{\epsilon/K}+1$ Theoretical analysis: associating privacy, fingerprint robustness, DB utility

Closed form association between **privacy** (ϵ), **randomization** (p), **robustness** (against random flipping, subset, correlation attacks), and DB **utility** (accuracy, statistics, e.g., marginal/joint distribution)

Cumulative privacy loss due to multiple sharing

- Practical concern of DP
	- Privacy degrades linearly if the same statistics are repeatedly shared
	- The same is true for repeatedly sharing a DB with multiple SPs

- Resort to Sparse Vector Technique (SVT)
	- Only releases a noisy result when it is beyond a noisy threshold
	- Pays the cost of privacy only for queries satisfying a certain condition, i.e.,

 $function (DB) + noise_1 \geq \Gamma + noise_2$

Cumulative privacy loss control via SVT

• Design principle

- For C SPs asking for the DB
- Only share fingerprinted copies with certain **privacy** and **robustness** requirements
- Requirements on **privacy** and **robustness** can be quantified via DB utility

Consider $function(DB) = ||\mathcal{M}(R) - R||_{1,1}$

Associate with **privacy** (ϵ), **randomization** (p), and **robustness**

Share fingerprinted DB with C SPs via SVT

- Key steps:
	- Generate a fingerprinted copy, $\mathcal{M}(\mathbf{R})$, with privacy budget ϵ
	- Sample two Laplace noises μ ~Lap(Δ ϵ_2) and $\rho{\sim}Lap($ Δ ϵ_3)
	- Only share $\mathcal{M}(\mathbf{R})$ if $\big|\big| \mathcal{M}(\mathbf{R}) \mathbf{R} \big|\big|_{1,1} + \mu \geq \Gamma + \rho$

Theorem: Preserve is (ϵ_0,δ_0) -entry-level DP.

$$
\epsilon_0 = \sqrt{2C \ln(1/\delta')} (\epsilon + \epsilon_2 + \epsilon_3)
$$

+
$$
C (\epsilon(\epsilon^{\epsilon} - 1) + (\epsilon_2 + \epsilon_3)(\epsilon^{\epsilon_2 + \epsilon_3} - 1))
$$

$$
\delta_0 = 2\delta'
$$

Experiments

• Two DBs

- Nursery school application: 12,960 records, 8 categorical attributes, 4 classes
- Census: 32,561 records, 14 discrete or categorical attributes, 2 classes
- Attributes are encoded as integers before fingerprinting

• Baselines

Hu et al., "Towards a privacy protection-capable noise fingerprinting for numerically aggregated data", Computers & Security. Li et al., "Fingerprinting relational databases: Schemes and specialties", IEEE TDSC. 13

Experiments

- Use 128 bits for fingerprint and consider 50% random bit flipping attack
- x -axis: accuracy of fingerprinted DB
- y -axis: match of extracted fingerprint from compromised DB

Experiments

(b) PCA on Nursery Database.

(a) SVM on Census Database.

Conclusions

- Developed the first privacy-preserving DB fingerprinting scheme
- Connect privacy, fingerprint robustness, and DB utility
- Use SVT to control cumulative privacy loss
- Future work
	- Mitigate correlation attacks
	- Improve utility by utilizing data distribution
	- Defend against membership inference attack Contact: Tianxi Ji

National Institutes of Health

tiji@ttu.edu

Entry-level DP v.s. DP

No matter what learning-based inference attack the malicious SP conducts, its inference capability can never be higher than $\frac{\psi e^{\epsilon}}{\psi e^{\epsilon}+1}$, i.e., InfCap $\leq \frac{\psi e^{\epsilon}}{\psi e^{\epsilon}+1}$, where $\psi =$ $\frac{\Pr(\mathbf{r}_i[t]=\zeta_1|\mathbf{R}_{\r{r}_i[t]})}{\Pr(\mathbf{r}_i[t]=\zeta_2|\mathbf{R}_{\r{r}_i[t]})}$ is the ratio of the malicious SP's prior knowledge of the unknown entry $r_i[t]$ taking different values (i.e., ζ_1 and ζ_2) given all other entries are known.

- All entries in DB satisfying ϵ -entry-level DP are naturally ϵ -DP for DB
- Privacy amplification occur when ϵ' -DP holds for DB and $\epsilon' < \epsilon$
	- Subsampling
	- Shuffling

DB utility: SQL query

Q1:SELECT PmyKey FROM Nursery WHERE $children = more AND social = slightly_prob$ Q2:SELECT PmyKey FROM Nursery WHERE $\text{parent} = \text{usual AND finance} = \text{incov}$

Collusion attack

- Malicious SPs combine their versions of fingerprinted DBs to forge a pirated copy with the hope that none of them can be traced back
- Achieve collusion-resistant, privacy-preserving fingerprinting by leverage randomness of Tardos code

Application on Genomic DB

https://github.com/xiutianxi/ldp_genomic_fp 21