

Detecting Unknown Encrypted Malicious Traffic in

Real Time via Flow Interaction Graph Analysis Effective and Efficient Detection for Encrypted Malicious Traffic

Chuanpu Fu¹, Qi Li^{1,2}, Ke Xu^{1,2}

¹Tsinghua University, Beijing, China; ²Zhongguancun Lab, China

1. Backgrounds: Traffic Encryption

> Traffic encryption is widely adopted on the Internet.

Encrypted Plaintext

May 2019, 94% of all Google web traffic is encrypted.¹

Nearly 80% of web pages loaded by Firefox use HTTPS.²

Encrypted Plaintext

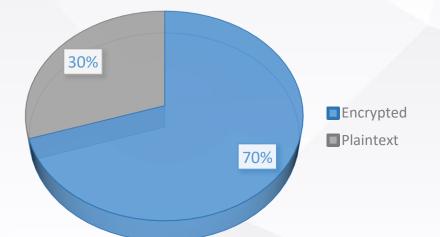
Encrypted Plaintext

Over 98% Alexa top 1k websites support HTTPS.

[1] <u>https://transparencyreport.google.com/https/overview?hl=en</u>
[2] Predicts 2017: Network and Gateway Security.

1. Backgrounds: Abused Traffic Encryption

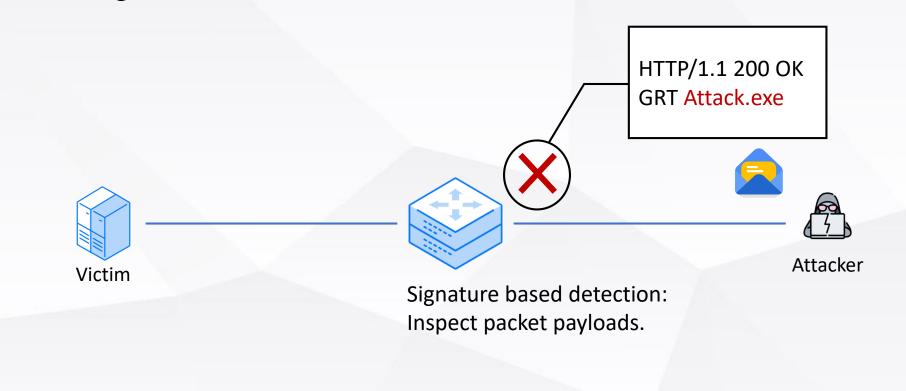
- > Traffic Encryption is double-edged.
 - Attackers abuse traffic encryption to conceal their behaviors, e.g., data breach, and exfiltration.
 - It is reported that, 70% attacks were constructed by encrypted traffic in 2020.



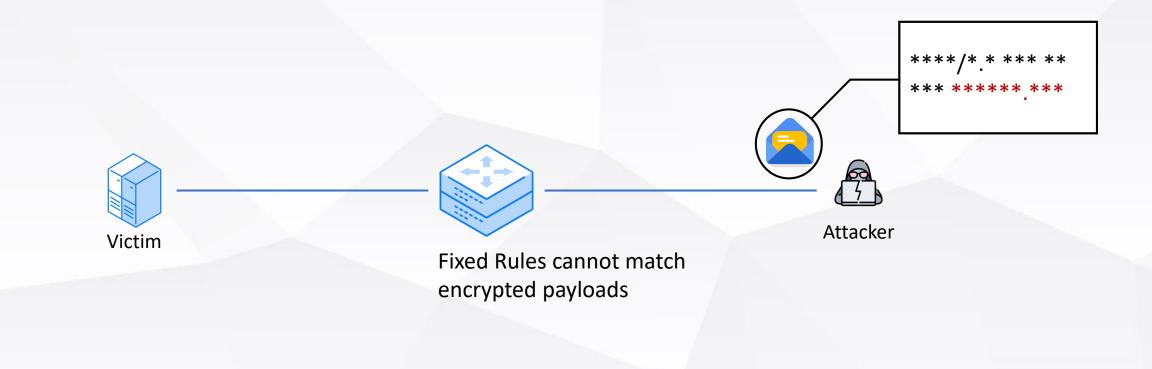
Over 70% attacks were constructed by encrypted attack traffic.

[3] Cisco Encrypted Traffic Analytics White Paper, Cisco.

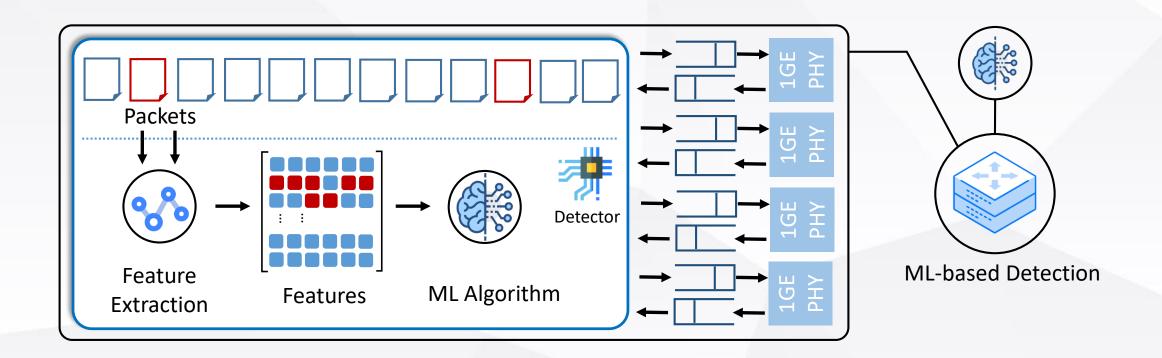
Attackers can easily evade the existing detection via traffic encryption. Traditional signature-based method:



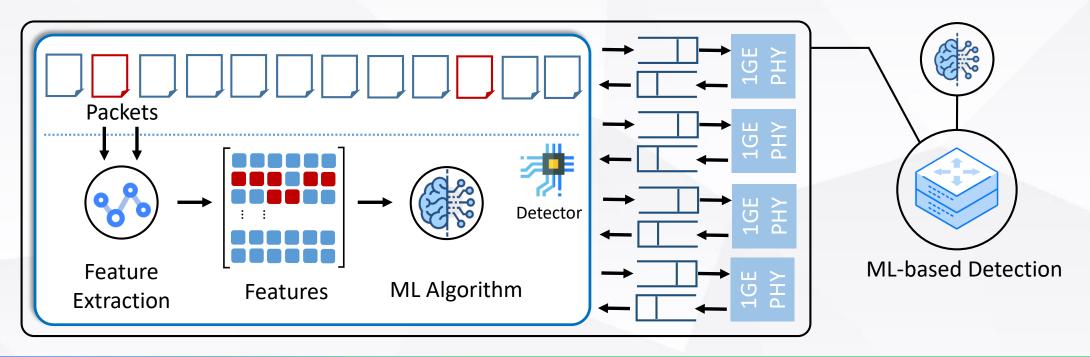
- Attackers can easily evade the existing detection via traffic encryption.
 - Traditional signature-based method: Deep Packet Inspection (DPI) is invalid.



> Attackers can easily evade the existing detection via traffic encryption.



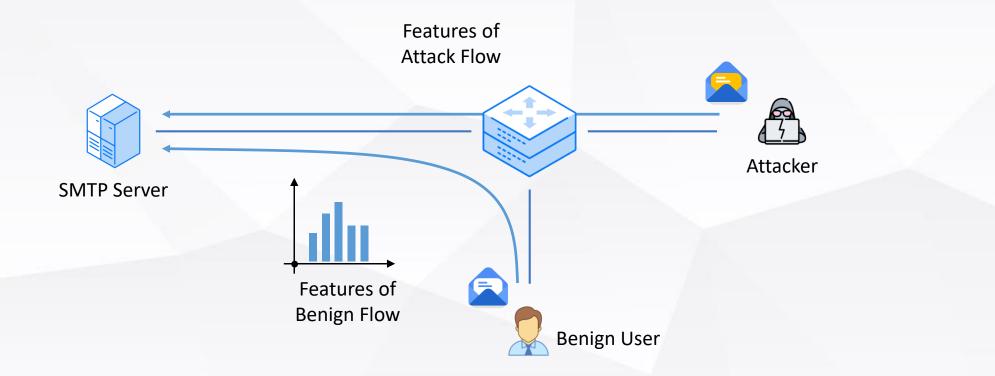
- > Attackers can easily evade the existing detection via traffic encryption.
- ➤ Advanced ML-based detection cannot detect such attack either.
 - Encrypted malicious flows with benign traffic patterns.



1. Backgrounds: Encrypted Attack Traffic Evades Detection

➤ Advanced ML-based detection cannot detect such attack either.

- Benign SMTP-over-TLS Traffic & Encrypted Spam Traffic.
- > Traditional traffic features cannot differentiate encrypted malicious traffic.



Democracy Contension Description Mathematic Traffic in Real Trans. on Plane Interaction: Graph Analysis

2. Motivation: Interaction Patterns

It is still possible to detect encrypted malicious traffic according to interaction pattern.
The interactions between spambots and SMTP servers are significantly frequent.

We explore utilizing flow interaction patterns for malicious traffic detection.

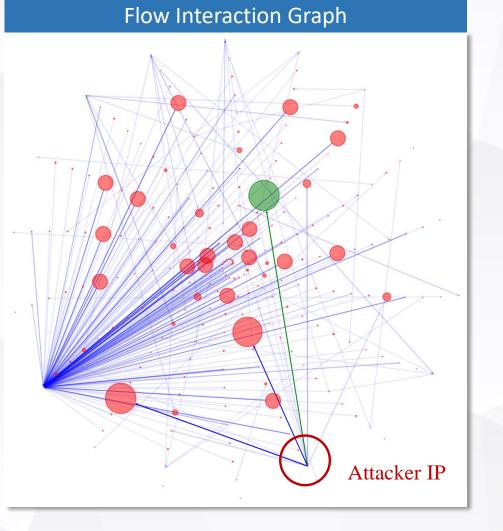


2. Motivation: Flow Interaction Graph

 \succ We use a graph to represent the interaction patterns.

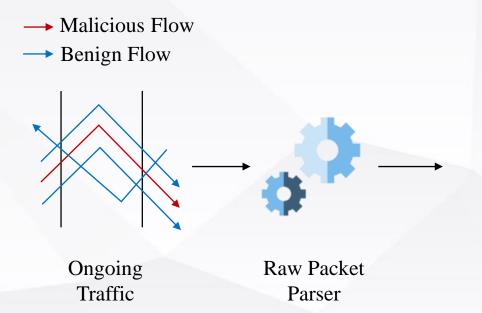
- \succ Vertices \rightarrow IP addresses.
- \succ Edges \rightarrow Flows

We use unsupervised graph learning to detect the attacks, without requiring any prior knowledge.



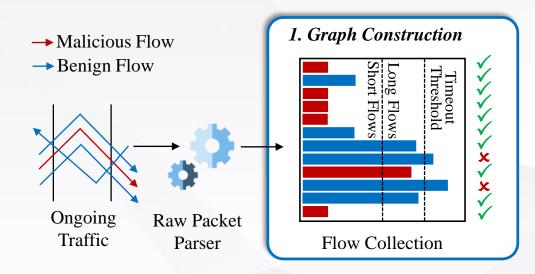
3. Design: Overview

➤ Module 1: Graph Construction Module.



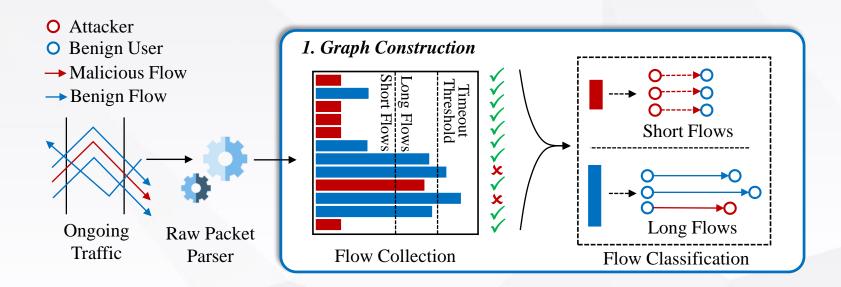
3. Design: Overview

➤ Module 1: Graph Construction Module.



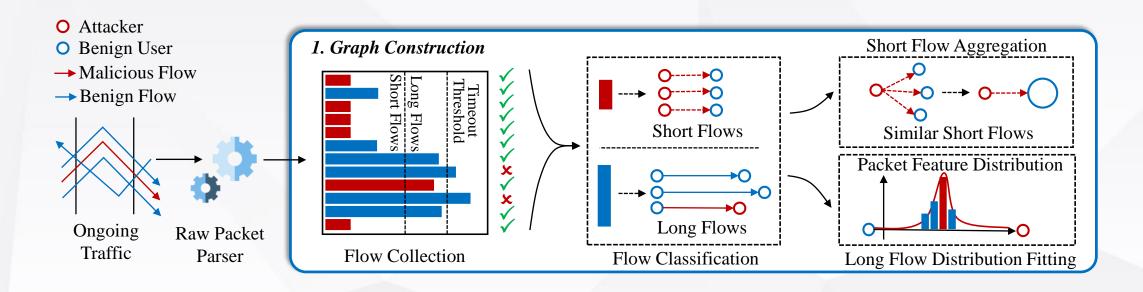
3. Design: Overview

➤ Module 1: Graph Construction Module.



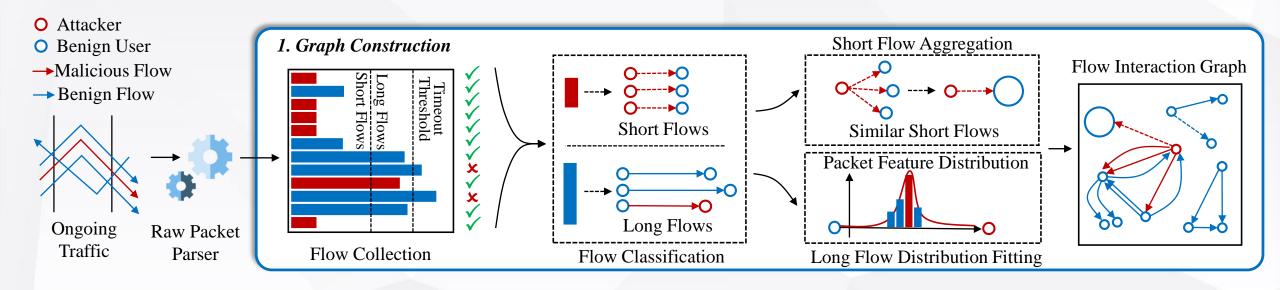
3. Design: Overview

➢ Module 1: Graph Construction Module.



3. Design: Overview

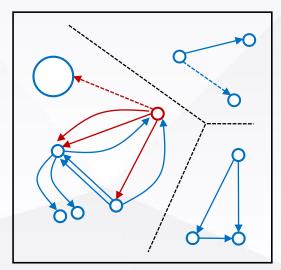
➢ Module 1: Graph Construction Module.



3. Design: Overview

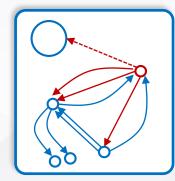
➤ Module 2: Graph Pre-Processing Module.

Flow Interaction Graph

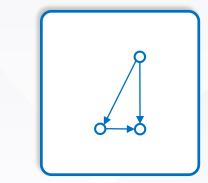


3. Design: Overview

➢ Module 2: Graph Pre-Processing Module.



Strongly Connected Components

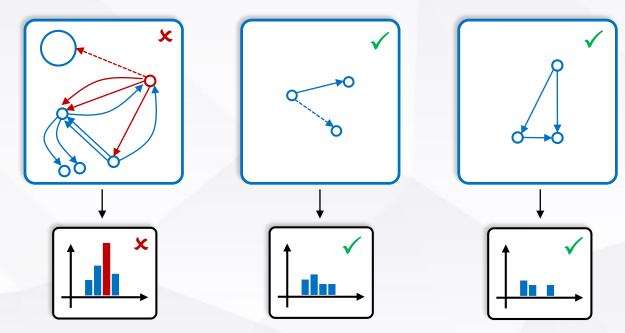


Chuanpu Fu, NDSS 2023

3. Design: Overview

➢ Module 2: Graph Pre-Processing Module.

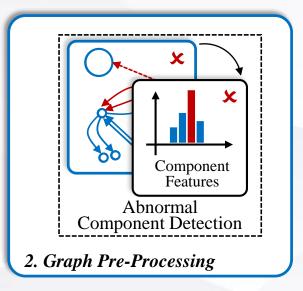
Strongly Connected Components



Component Statical Features

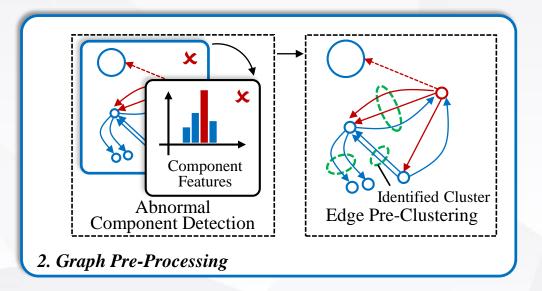
3. Design: Overview

➤ Module 2: Graph Pre-Processing Module.



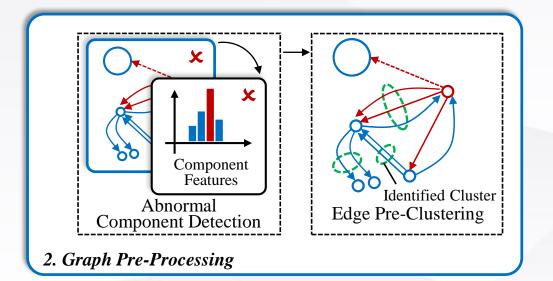
3. Design: Overview

➤ Module 2: Graph Pre-Processing Module.



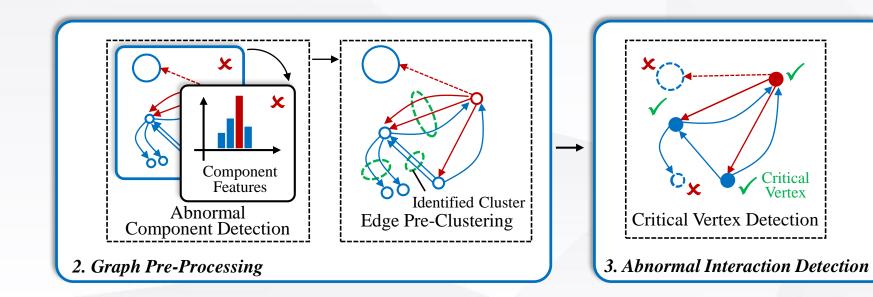
3. Design: Overview

➤ Module 2: Graph Pre-Processing Module.



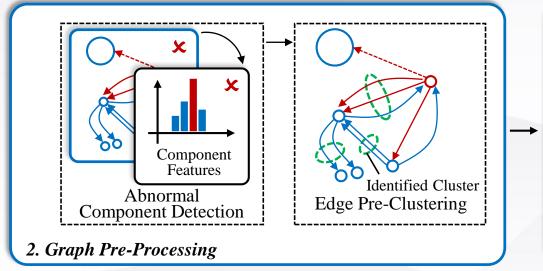
3. Design: Overview

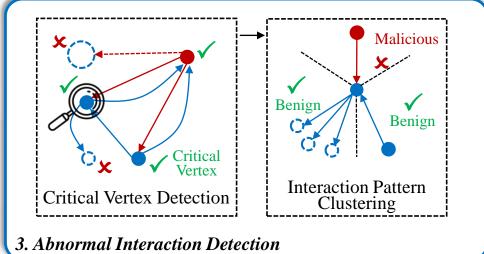
➤ Module 3: Graph Detection Module.



3. Design: Overview

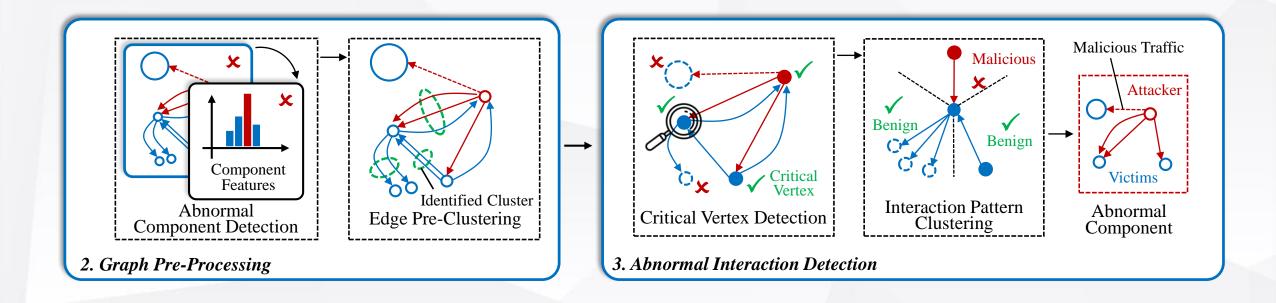
➤ Module 3: Graph Detection Module.



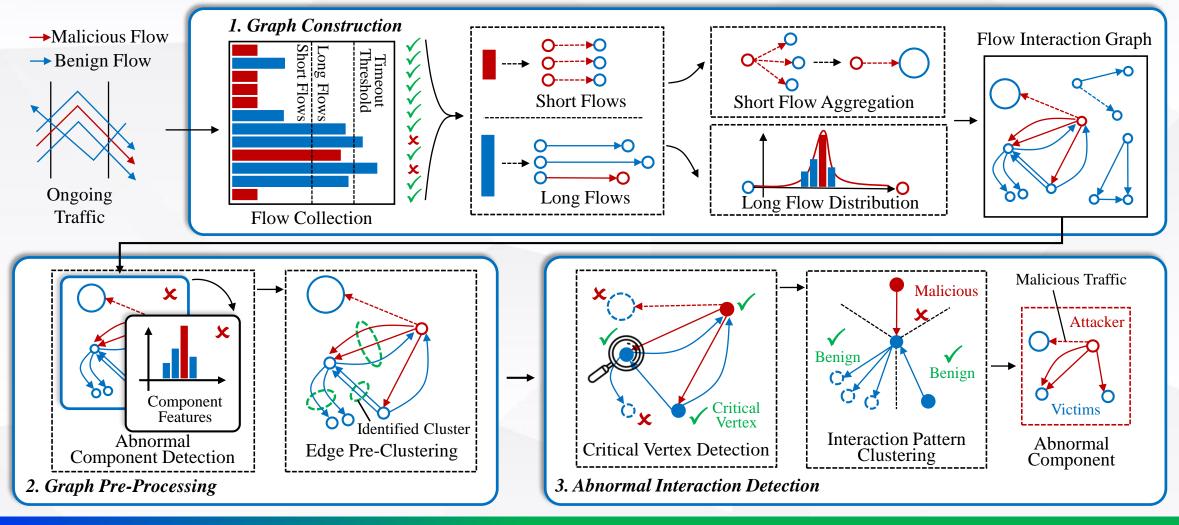


3. Design: Overview

➤ Module 3: Graph Detection Module.



3. Design: Overview

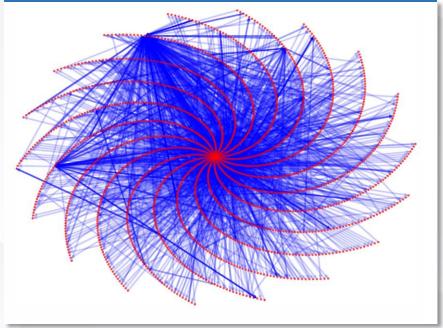


3. Design: How to reduce graph density?

Complex flow interaction patterns.

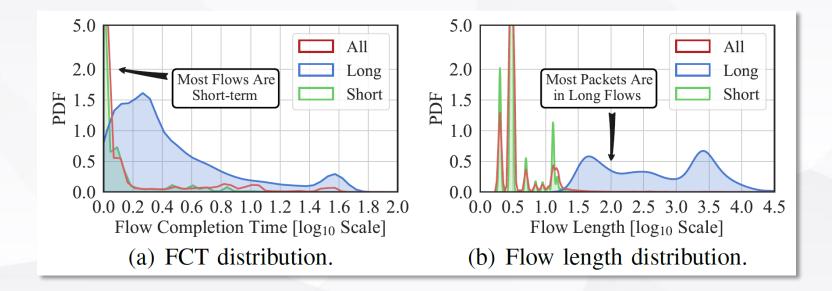
- 1. Over 50,000 active hosts reside in AS2500.
- 2. Over 3M flows per hour.

- ➤ We cannot use one edge to denote one flow and use one vertex to denote one IP → dependency explosion problem.
 - ➢ How to reduce the density of a graph?



3. Design: How to reduce the graph density?

- > Observation: most flows are short flow, and most packets are in long flow.
- Solution: we construct edges to represent short and long flow, separately.



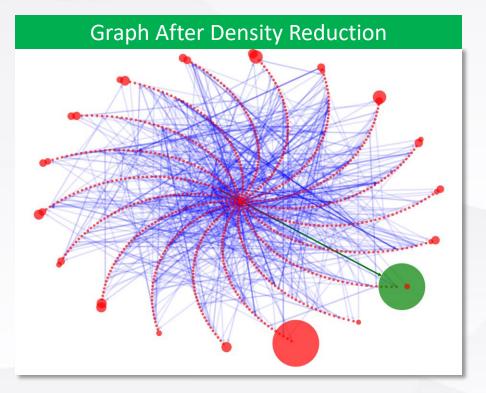
3. Design: How to reduce the dense graph?

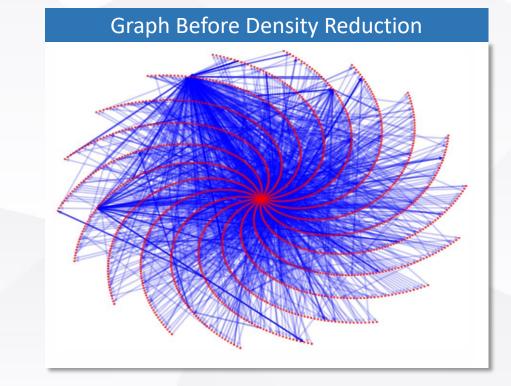
> Many short flows are similar, e.g., DNS queries, password cracking.

- > We aggregate the short flows and use one edge to represent many short flows
- \succ Long flows have complex patterns.
 - > We extract fine-grained features for long flows, i.e., distribution features.

➢ One edge → many short flows or one long-flow.
➢ One vertex → a group of addresses or one address.

3. Design: How to reduce the dense graph?

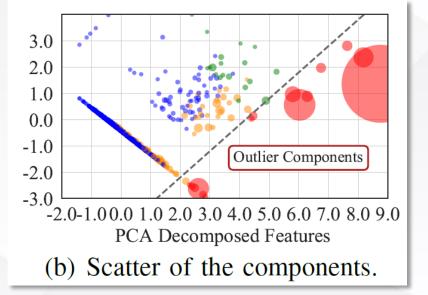




3. Design: How to efficiently identify attack

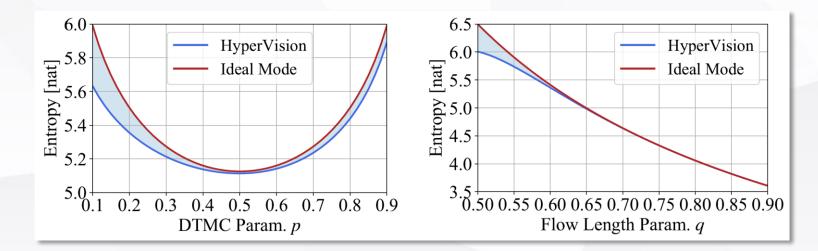
traffic?
 The size of graph is still too large for real-time graph
 learning.

We exclude benign components by clustering the highlevel statistics.



4. Theoretical Analysis

- ➤ To prove the effectiveness of the method, we developed an information theory based analysis framework, which models flows by using DTMC.
- By calculating the entropy of the DTMC, we prove the amount of information preserved on the graph is near-optimal.

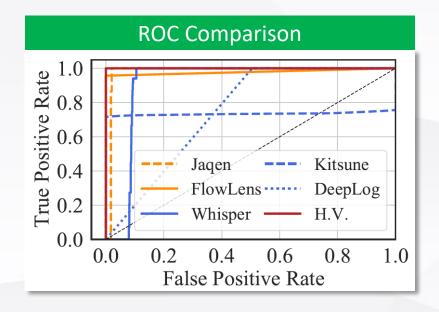


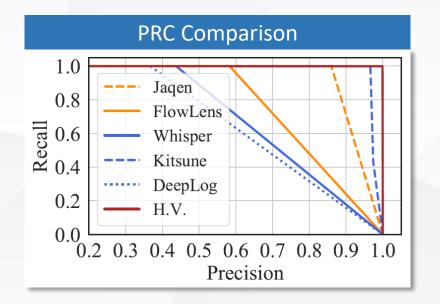
5. Experimental Analysis: Setup

- > We implement our method using Intel DPDK (Data Plane Development Toolkit).
 - The source code is publicly available.
- On the physical testbed, we replay 92 kinds of malicious traffic, including 48 attacks with encrypted malicious traffic:
 - > *Traditional brute attacks* (e.g., amplification attacks).
 - > *Encrypted flooding traffic* (e.g., the Crossfire Attack).
 - ➢ Encrypted Web attack traffic (e.g., CVE-2013-2028).
 - Malware generated traffic (e.g., C&C Channel).
- These attack traffic is collected form a scaled private cloud network (> 1500 users), and the malware traffic is manually extracted form public datasets.

5. Experimental Analysis: Results

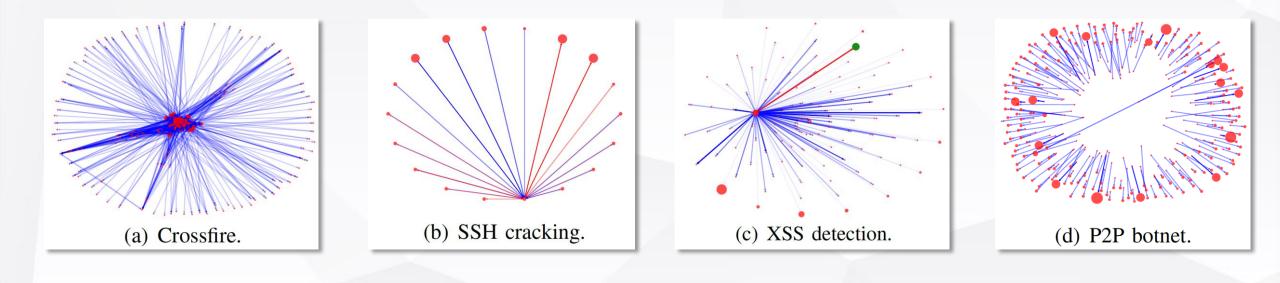
HyperVision outperforms 5 SOTA methods in detection accuracy. Over 50% of the stealthy attacks cannot be identified by all the methods.





5. Experimental Analysis: results

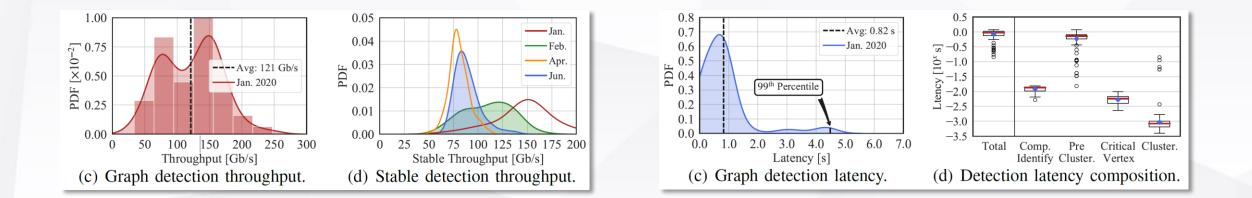
 \succ The method can detect many sophisticated attacks.



5. Experimental Analysis: results

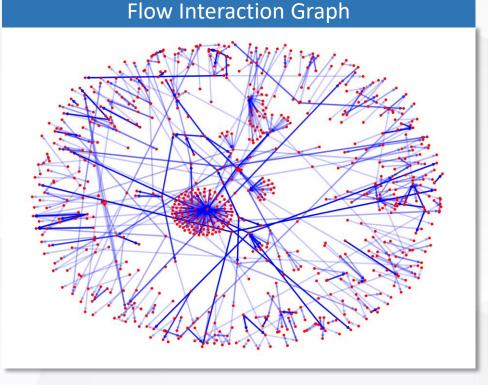
> The method realizes both high detection throughput and low latency.

- > The graph detection module can process 121 Gb/s traffic on average.
- > Meanwhile, the average detection latency is only 0.82s.

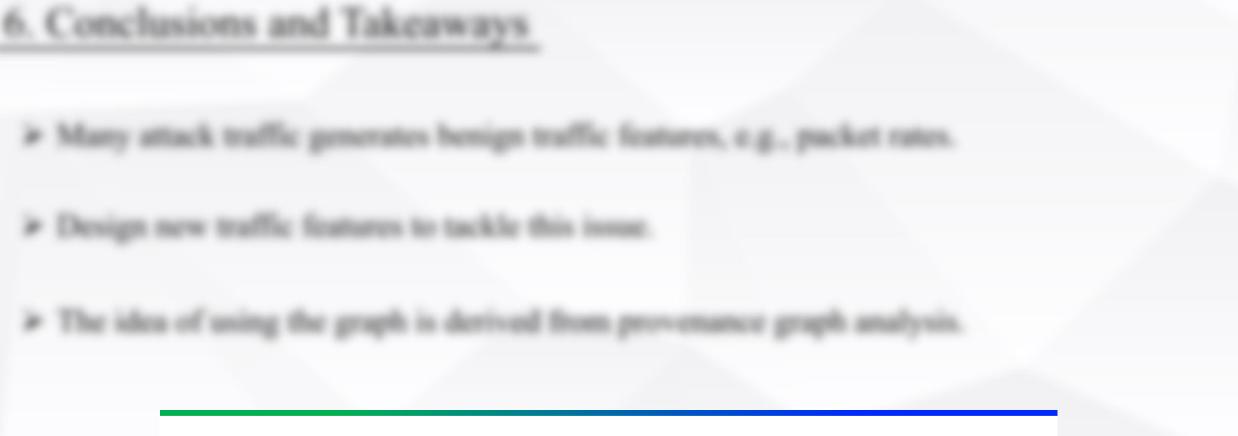


6. Conclusions and Takeaways

We develop an encrypted malicious traffic detection method, which utilize *flow interaction patterns* represented by *graph structural features*.



Description of the second biological fields and the second s



We believe the flow interaction graph can be applied to other network applications.

Detecting Unknown Encrypted Malicious Traffic in

Real Time via Flow Interaction Graph Analysis Effective and Efficient Detection for Encrypted Malicious Traffic

Chuanpu Fu¹, Qi Li^{1,2}, Ke Xu^{1,2}

¹Tsinghua University, Beijing, China; ²Zhongguancun Lab, China

