
The Evolution of Program Analysis

Approaches in the Era of AI

Alex Matrosov

@matrosov

● Founder and CEO at

● 20+ years doing all shades of binary program analysis

● Break a few times CPU’s and GPU’s

● Dedicating all my free time to surfing 🏄♂️

This talk is not intended to cover the
complete history of binary program analysis

or reverse engineering.

I am describing the evolution of RE from the
perspective of my personal experience over

20+ years.

Unknown structured formats

Signature-based automation

Undocumented structured formats

Entropy based ML models good for file format classification

Automated detection signature generation

“Automatic Yara Rule Generation Using Biclustering” - 2020

https://arxiv.org/pdf/2009.03779.pdf https://github.com/google/vxsig

https://arxiv.org/pdf/2009.03779.pdf
https://github.com/google/vxsig

Disassembly CFG => Visual Graph Representation

REconstruction of complex C++ code still a problem in 2023

https://static.googleusercontent.com/media/www.zynamics.com/en//downloads/csw09.pdf

https://static.googleusercontent.com/media/www.zynamics.com/en/downloads/csw09.pdf

IR => Code Semantics

HexRaysCodeXplorer v1.0: released in 2013 at REcon

Ghidra P-Code more suitable for RE needs vs Hex-Rays IR

Ghidra P-Code more suitable for RE needs vs Hex-Rays IR

The most comprehensive IR for RE is developed by Binary Ninja

Decompilation != Silver Bullet

The decompilation of Golang is a disaster

The decompilation of Rust is a disaster

Next directions for REsearch

- Utilize more Data Flow Analysis, industry is too focused on Control Flow

Analysis and missing out on Data Semantics.

- Data and Code Reconstruction required specific methods to preserve code

and its dependencies, as well as fast methods of querying this data. Datalog

can be used to represent data and code in a deductive database, but it

requires a large amount of memory.

- Infer ML models based on code semantics, not byte sequences, which lack

context.

https://www.theregister.com/2022/09/13/firmware_bugs_hp

https://www.theregister.com/2022/09/13/firmware_bugs_hp

https://binarly.io/advisories

https://binarly.io/advisories

Revisiting Automated Bug Hunting

● Progression of our past work:
“efiXplorer: Hunting for UEFI Firmware Vulnerabilities at Scale with Automated Static Analysis” 1

● Scalable approach based on vulnerability models; combination of:
1. Lightweight static analysis
2. Under-constrained symbolic execution

1: https://i.blackhat.com/eu-20/Wednesday/eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-At-Scale-With-Automated-Static-Analysis.pdf

Limitations of current approaches

False Positive

With great scalability, comes a (great) potential for false positives!

Limitations of existing approaches:
● Large number of false positives
● Mostly based on syntactic properties (pattern matching on disassembly)
● Highlighted in research by SentinelOne (Brick2):

○ Pattern matching on decompiler output
○ But: requires decompiler (Hex-Rays) & will not scale

Binarly team approach:
○ Leverage semantic properties
○ Use lightweight code pattern checkers to provide hints for deeper analysis

2: https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/

Limitations of current approaches

Analysis pipeline

Inspired by: “Sys: A Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code” (Brown et al., USENIX Security 2020)

Typically takes 4-6s per firmware image (100s of modules)

IR lifting
● Extract uniform SSA from IR representation for 32-bit and 64-bit modules
● IR explicitly encodes instruction side-effects

Lifting

SSA transformation

Binarly Semantic annotations

● Annotate IR with types and service information (similar to efiXplorer3 and
FwHunt4)

● Identify analysis entry-points based on module type, e.g.:
○ SMI handlers (DXE/SMM modules)
○ PEI notification callbacks (PEI modules)

3: https://github.com/binarly-io/efiXplorer
4: https://github.com/binarly-io/fwhunt-scan

https://github.com/binarly-io/efiXplorer
https://github.com/binarly-io/efiXplorer
https://github.com/binarly-io/fwhunt-scan

Binarly Static checkers

● Checkers based on lightweight static analysis defined using an eDSL:

● Control-flow properties (reachability)
● Data-flow properties (data-dependence)
● Inferred call-site properties (e.g., arguments passed, type information)
● Domain-specific annotations:

○ Service-specific (e.g., GetVariable variants in PEI and DXE phases)
○ Common APIs (e.g., CopyMem, ZeroMem, etc.)

Under-constrained Symbolic Execution

● Similar to past research:

“Finding BIOS Vulnerabilities with Symbolic Execution and Virtual Platforms”
5

Binarly team approach:

● Instrument anything (IR operation granularity)
● Simulate execution from anywhere
● Reason about hardware interactions and partial state using symbolic

variables injected during simulation
● Identify violations of model assumptions (e.g., input to API should not be

user-controlled)

● No source-code required!

5: https://www.intel.com/content/www/us/en/developer/articles/technical/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html

(BRLY-2022-014/CVE-2022-32579)

GetVariable leading to arbitrary write

PEI-phase vulnerabilities

PEI-phase vulnerabilities

(BRLY-2022-027/CVE-2022-

28858)

GetVariable without DataSize check
&

False Positive detection

(BRLY-2022-016/CVE-2022-33209)

Buffer overflow discovery
&

CommBuffer reconstruction

DXE/SMM vulnerabilities

Binary Diffing == BinDiff

“Graph-based comparison of Executable Objects” - 2005, SSTIC
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-

Graph_based_comparison_of_Executable_Objects.pdf

https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf

Binary Diffing == BinDiff

https://binarly.io/posts/A_deeper_UEFI_dive_into_MoonBounce

https://binarly.io/posts/A_deeper_UEFI_dive_into_MoonBounce

T-distributed Stochastic Neighbor Embedding (TSNE)

SBOM => Open/Closed Source Challenges

SBOM == Policy != Technology

https://binarly.io/posts/OpenSSL_Usage_in_UEFI_Firmware_Exposes_Weakness_in_SBOMs

https://binarly.io/posts/OpenSSL_Usage_in_UEFI_Firmware_Exposes_Weakness_in_SBOMs

Next directions for REsearch

- Detecting known vulnerabilities is different from finding known unknowns.

When automating vulnerability research, it is extremely important to scope the

search area correctly.

- We find more problems than we can automatically explain and triage.

Automating the process of explaining exploitability of the findings is one of the

most important challenges facing the industry.

- ML models guided by code semantics can automate the search for well

documented security problems.

The new old challenges of machine learning

AI/ML doesn't solve all problems magically

Thank You!

