REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service

Wenjie Qu¹, Jinyuan Jia², Neil Zhenqiang Gong³ ¹Huazhong University of Science and Technology ²University of Illinois Urbana-Champaign ³Duke University

Encoder as a Service

- Service provider
 - OpenAI, Clarifai
- Encoder
 - A general-purpose feature extractor
 - Supervised learning, self-supervised learning
- Client
 - Smartphone, IoT device, self-driving car, edge device

Deployment of Encoder as a Service

OpenAl's GPT-3

Clarifai's General Image Embedding

Standard Encoder as a Service

Building a Downstream Classifier

Adversarial Example

Certified Defense

- A certified defense
 - Build a certifiably robust classifier
 - Derive the certified radius
- Certifiably robust classifier:

$$h(\mathbf{x} + \delta) = h(\mathbf{x}), \forall \|\delta\|_2 < R \quad \text{Certified radius}$$
Classifier Testing Perturbation input

Certified Defense

- Base classifier (BC) based certification
 - CROWN, IBP
- Smoothed classifier (SC) based certification
 - Randomized smoothing

Base Classifier Based Certification

- Directly derive the certified radius of a given classifier (base classifier)
- White-box access to the base classifier

Smoothed Classifier Based Certification

• Build a certifiably robust smoothed classifier upon a base classifier

• Requires the base classifier to predict the labels of multiple noisy versions of a testing input.

Goal of A Client

- A client aims to
 - Build a certifiably robust classifier
 - Deriving its certified radius
- SEaaS
 - View composition of encoder and downstream classifier as a base classifier
 - BC or SC based certification

Base classifier

Challenges of Existing SEaaS

- BC based certification
 - Not applicable
- SC based certification
 - Incur large communication cost

Our Solution

- Robust Encoder as a Service (REaaS)
 - Feature-API
 - An extra API: F2IPerturb-API
 - Input: An image, a feature-space certified radius
 - Output: An image-space certified radius

Feature-space Certified Radius

- View the downstream classifier as a base classifier
 - BC or SC based certification
 - Build a certifiably robust downstream classifier

Base classifier

Encoder Testing input

$$h(f(\mathbf{x}) + \delta_F) = h(f(\mathbf{x})), \forall \|\delta_F\|_2 < R_F$$
Certifiably robust
downstream classifier Feature-space
perturbation Feature-space
certified radius

Image-space Certified Radius

Image-space
certified radius
$$\longrightarrow R = \max_{r} r$$

 $s.t. \max_{\|\delta\|_{2} < r} \|f(\mathbf{x} + \delta) - f(\mathbf{x})\|_{2} < R_{F}$

Solving the Optimization Problem

- Binary search
 - We verify whether a given r satisfy the constraint

$$\max_{\|\delta\|_{2} < r} \|f(\mathbf{x} + \delta) - f(\mathbf{x})\|_{2} < R_{F}$$

Non-linear

- Key challenge
- Key idea

• Derive an upper bound of
$$\max_{\|\delta\|_2 < r} \|f(\mathbf{x} + \delta) - f(\mathbf{x})\|_2$$

Summary of REaaS

Pre-training Robust Encoder

• Decomposition and spectral norm [1]

 $f(\cdot) = T^{n} \circ T^{n-1} \circ \cdots \circ T^{1}(\cdot) \qquad \left\| f(\mathbf{x}) - f(\mathbf{x} + \delta) \right\|_{2} \le \prod_{j=1}^{n} \left\| T^{j} \right\|_{s} \cdot \left\| \delta \right\|_{2}$ Spectral norm

• We use the following loss:

$$\frac{1}{m} \cdot \sum_{i=1}^{m} l(i) + \lambda \cdot \prod_{j=1}^{n} \left\| T^{j} \right\|_{s}$$

[1] Szegedy et al. "Intriguing properties of neural networks", in ICLR, 2014.

Theoretical Comparison with SEaaS

• REaaS makes BC based certification applicable

• REaaS incurs a smaller communication cost for SC based certification

Evaluation

- Pre-training dataset and algorithm:
 - Tiny-ImageNet
 - MoCo
- Downstream dataset and classifier:
 - CIFAR10, SVHN, STL10
 - A fully connected neural network

Evaluation Setting

- BC based certification
 - CROWN
- SC based certification
 - Randomized smoothing

Evaluation Metrics

- #Queries
 - #Queries per training input
 - #Queries per testing input
- Average certified radius (ACR)

Comparing REaaS with SEaaS

Service	Downstream dataset	ACR	#Queries	
			Per training input	Per testing input
SEaaS	CIFAR10			
	SVHN	N/A		
	STL10			
REaaS	CIFAR10	0.138		
	SVHN	0.258	1	2
	STL10	0.090		

REaaS supports BC based certification while SEaaS does not.

Comparing REaaS with SEaaS

Service	Downstream dataset	ACR	#Queries	
			Per training input	Per testing input
SEaaS	CIFAR10	0.157		
	SVHN	0.226	25	1×10^5
	STL10	0.134		
REaaS	CIFAR10	0.171		
	SVHN	0.275	1	2
	STL10	0.143		

REaaS achieves larger ACR while incurring smaller communication cost for SC based certification

Comparing Our Pre-training Method with Existing Ones

- Non-robust MoCo
- RoCL (generalize adversarial training)

Comparing Our Pre-training Method with Existing Ones

Certification Method	Pre-training Method	ACR
	Non-robust MoCo	0.010
BC	RoCL	0.012
	Ours	0.139
	Non-robust MoCo	0.014
SC	RoCL	0.017
	Ours	0.173

Our pre-training method outperforms existing ones

Extending REaaS to NLP Domain

ACR	#Queries		
	Per training input	Per testing input	
2.517	1	2	

Conclusion

- We propose REaaS that enables a client to build a certifiably robust downstream classifier
- Our REaaS reduces the communication cost of SC based certification
- Our pre-training method improves the certified robustness of a downstream classifier

Thank you!