WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran[†], William Hass[§], Kang G. Shin[†], Lars Wolleschensky[§], Rekha Singoria[§], Isaac Snellgrove[§], and Ran Tao[§]
† The University of Michigan, Real-Time Computing Lab
§ Lear Corporation

What is Dooring?

- Vehicle passenger opens door into path of vulnerable road user (VRU)
 - ➤ E.g., bicycles, e-scooters, runners
- Pervasive accident & high injury rate:
 - ~I per day in Chicago
 - Over 80% of accidents left biker seriously injured in San Francisco
 - Most common cycling accident type in Vancouver

https://ftw.usatoday.com/2014/09/bike-lane-new-york-crash

Shortcomings of SOTA Dooring Prevention Solutions

- Prohibitively expensive
 - > LiDAR
- Line-of-sight issue
 - ➤ Camera, radar
- **❖** VRU opt-in required
 - Vehicle-to-pedestrian
 - Bluetooth Low-Energy (BLE) pairing
- Impractical
 - Vehicle modification

Providing Vehicles With Low-Cost Dooring Prevention

- Pedestrian mobile devices passively transmit Bluetooth Low-Energy (BLE) advertising (AD) packets
- Vehicles are equipped with multiple
 BLE receivers at various locations
- ❖ S-Door:
 - Passively observe AD packets from each receiver use RSSI as a proxy for distance

https://www.ontario.ca/fr/page/conduite-aux-passages-pour-pietons-et-aux-passages-pour-eleves

Localizing VRU Using (Inaccurate) RSSI and Angle-of-Arrival

- Triangulation
 - > Requires precise direction
- Trilateration
 - Requires precise distance
- Outside bounds of receivers
 - Multiple solutions
- Arr Triangulation-Trilateration (TRI²)

```
Algorithm 1: TRI<sup>2</sup>: Triangulation-Trilateration
 Data: A list X, where X_i = (RSSI_i, d_i, \theta_i, p_i).
 Result: p, the predicted position of the VRU.
 S\leftarrow\emptyset:
 /* Step 1: Create circle
     sectors and rectangles to union
     them and generate pentagons.
 foreach X_i \in X do
     C_i \leftarrow CircSector(d_i, \theta_i - \delta, \theta + \delta, p_i);
     R_i \leftarrow Rect(2(l+d_i), d_i \frac{\sin(2\delta)}{\sin(\frac{1}{2}(180-2\delta))}, p_i);
     S.append(UnionShapes(C_i,R_i));
 end
 /* Step 2:
     Intersect generated pentagons.
 I \leftarrow IntersectShapes(S);
 /* Step 3: Find
     weighted center of the polygon.
p \leftarrow WeightedCenterShape(I);
  (a) Step 1.
                         (b) Step 2.
                                                 (c) Step 3.
```

Results

- 10 trials each for VRU walking, running, and biking
- VRU detected with True-Positive Rate of 100%
- But... Still many false-positives (FPs)
 - A detected VRU is misidentified as being nearby and behind the vehicle

Prototype of S-Door

Concluding With Remaining Work

- Thorough evaluation of angle-of-arrival transmission capabilities from smartphones
- Implement S-Door in real vehicle
- Test in more diverse set of environments
- Assess privacy implications of using AD packets to locate VRUs (via user studies)

Resources:

- Websites
 - https://www.linkedin.com/in/noah-curran/
 - https://rtcl.eecs.umich.edu/rtclweb/
- Contact
 - ntcurran@umich.edu kgshin@umich.edu

