
Predictive
Context-sensitive
Fuzzing
Pietro Borrello (Sapienza)
Andrea Fioraldi (EURECOM)
Daniele Cono D’Elia (Sapienza)
Davide Balzarotti (EURECOM)
Leonardo Querzoni (Sapienza)
Cristiano Giuffrida (VU Amsterdam)

Feb 29, 2024. NDSS’24 Symposium

Coverage-guided fuzzing

Corpus Input
Mutation

Program
Under Test

Failures

Coverage

Edge-coverage guided fuzzing

+1
0x41414141: jmp 0x42424242

hash_edge(0x41414141, 0x42424242)

Context-sensitive, edge-coverage guided fuzzing

+1
foobar:
<ctx = ctx ^ foobar>
…

0x41414141: jmp 0x42424242

…
<ctx = ctx ^ foobar)>
ret

hash_edge(0x41414141, 0x42424242, ctx)

foobar()
…
baz()
foo()
TestOneInput()

Why helpful?

🚨 coverage of cmd bar is a superset of cmd
foo

Challenges to efficiency

1 coverage map explosion
2 queue explosion

Fuzzer Queue size Exec/sec Collisions (map use)

 classic edge (2^16 map) 9 911 609 9.8% (19.86%)

 pcguard edge (coll.-free) 11 093 572 -

 ctx-sensitive (2^16 map) 33 675 530 50.7% (79.54%)

 ctx-sensitive (2^20 map) 21 157 84 1.2% (7.21%)

 predictive ctx-sensitive 15 455 490 -

1
2

1
24h on libxml2 - AFL++ 3.15a

Drivers & seeds: FuzzBench

1

2

Challenges to efficiency

Fuzzer

 classic edge (2^16 map)

 pcguard edge (coll.-free)

 ctx-sensitive (2^16 map)

 ctx-sensitive (2^20 map)

 predictive ctx-sensitive

1 coverage map explosion
2 queue explosion
1

2
Impact on edge coverage

Making it efficient…

Key ideas
1. encode context without collisions
2. track context only at selected regions
3. predict profitable regions

Collision-free edge coverage

Block 1

Block 3

Block 2

Block 4

Splitting CFG critical edges removes
collisions in edge-coverage tracking

Collision-free edge coverage

Block 1

Block 3

Block 2

Block 4

Edge Block

Instrumentation

Instrumentation

Instrumentation

As basic-block IDs
now suffice to uniquely
identify edges

Collision-free context-sensitivity?

By cloning a function, we
get unique CFG edges for
a (caller, callee) pair

Fn1

Fn2 Fn3

Fn4

Fn1

Fn2 Fn3

Fn4’
(clone)Fn4

Selective sensitivity

Benchmark (FuzzBench) Edges Functions Call sites Calling contexts

ffmpeg 716 K 5 K 44 K 8 M

libarchive 67 K <1 K 4 K 27 M

libhevc 120 K 2k < 1K 125 M

libxml2 104 K 1k 7 K 44 B

njs 57 K 490 4 K 13 M

Cloning is fuzzer-friendly, but the path explosion problem stays!

Initial strategies

Prioritize within cloning budget
• favor call sites from nodes closer to call-graph root (harness)
• favor call sites closer to leaves
• treat every call site with the same priority

vs. random selection

📣 No explosion, but none > pcguard 👎

Data flow-based prediction

Prioritize call sites with distinctive incoming data
• clone one if it passes data “seen less often” at other callers
• diversity as a proxy for interesting
• needs only call-site sensitivity (i.e., no full contexts)
• focus on pointer-type arguments

Data flow-based prediction

Fn1

Fn2 Fn3

Fn5

Fn4

Fn1

Fn2 Fn3

Fn5

Fn4

Fn5’

Fn4 passes objects
to Fn5 not seen at
Fn2 or Fn3? Clone it

Implementation

• gllvm
• AFL++ 3.15a
• LLVM 10
• SVF framework

https://github.com/eurecom-s3/
predictive-cs-fuzzing

https://github.com/eurecom-s3/predictive-cs-fuzzing
https://github.com/eurecom-s3/predictive-cs-fuzzing

Evaluation

RQ: Can we find bugs that existing approaches overlook?
RQ: How is fuzzing performance affected?

Who: pcguard LTO, Angora-style CS fuzzing, Predictive CS fuzzing
How: 16 programs from FuzzBench bug benchmarks

budget of 2^18 entries (L2 size)

Bug counts

Highlights
• +11.6% than lto, +22.5% than context
• 23 of our bugs (19.2%) were missed by lto

(7 from new coverage, 16 from exploitation)

predictive (125)
lto (112)
context (102)

And new bugs!

predictive (26)
lto (16)
context (21)

Highlights
• 26 out of 31 were exposed by predictive
• 8 security issues (1 each in ffmpeg, njs, libhevc,

and matio; 4 in stb) - 6 CVEs assigned

Fuzzing performance

Trends
• queue size: +26.4% vs lto (context: +81.7%)
• throughput: 6.5% slower than lto (context: 20.3%)
• coverage: close to lto on 12/16 subjects, better on 8
• tenable compilation costs, 3.6x binary size increase

Final remarks

Existing approaches face an impossible trade-off between collisions and
trashing from queue/map explosion. We show a profitable avenue as we
proactively select the most promising contexts based on data-flow diversity

Future opportunities: non-pointer arguments, cloning for indirect calls

