
CounterSEVeillance:
Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast∗, Hannes Weissteiner∗, Robin Leander Schröder†‡ and Daniel Gruss∗
∗Graz University of Technology, Austria
†Fraunhofer SIT, Darmstadt, Germany
‡Fraunhofer Austria, Vienna, Austria

Abstract—Confidential virtual machines (VMs) promise higher
security by running the VM inside a trusted execution environ-
ment (TEE). Recent AMD server processors support confidential
VMs with the SEV-SNP processor extension. SEV-SNP provides
guarantees for integrity and confidentiality for confidential VMs
despite running them in a shared hosting environment.

In this paper, we introduce CounterSEVeillance, a new side-
channel attack leaking secret-dependent control flow and operand
properties from performance counter data. Our attack is the
first to exploit performance counter side-channel leakage with
single-instruction resolution from SEV-SNP VMs and works on
fully patched systems. We systematically analyze performance
counter events in SEV-SNP VMs and find that 228 are exposed
to a potentially malicious hypervisor. CounterSEVeillance builds
on this analysis and records performance counter traces with
an instruction-level resolution by single-stepping the victim VM
using APIC interrupts in combination with page faults. We match
CounterSEVeillance traces against binaries, precisely recovering
the outcome of any secret-dependent conditional branch and
inferring operand properties. We present four attack case studies,
in which we exemplarily showcase concrete exploitable leakage
with 6 of the exposed performance counters. First, we use Coun-
terSEVeillance to extract a full RSA-4096 key from a single Mbed
TLS signature process in less than 8 minutes. Second, we present
the first side-channel attack on TOTP verification running in an
AMD SEV-SNP VM, recovering a 6-digit TOTP with only 31.1
guesses on average. Third, we show that CounterSEVeillance
can leak the secret key from which the TOTPs are derived
from the underlying base32 decoder. Fourth and finally, we
show that CounterSEVeillance can also be used to construct a
plaintext-checking oracle in a divide-and-surrender-style attack.
We conclude that moving an entire VM into a setting with a
privileged adversary increases the attack surface, given the vast
amounts of code not vetted for this specific security setting.

I. INTRODUCTION

In cloud computing, customers run virtual machines (VMs)
on the cloud provider’s host hardware, with multiple tenants
sharing the same host for execution, requiring trust in the
provider. However, when processing privacy- or security-
critical information, customers want to protect their data
from untrusted cloud providers or compromised hypervisors.
Confidential VM technologies like AMD Secure Encrypted

Virtualization (SEV) [11], Intel Trust Domain Extensions
(TDX) [45], or ARM Confidential Compute Architecture
(CCA) [13] promise higher security by running the VM
inside a trusted execution environment (TEE), designed to
protect sensitive data from physical and privileged software
access. In contrast to other TEEs, like Intel Software Guard
Extensions (SGX) [46], or ARM TrustZone [14], which are
designed to run only specialized, hardened code, AMD SEV
and Intel TDX are designed to run an entire software stack
supplied by the customer, including a fully-featured, general-
purpose operating system. Customer software stacks tend to be
complex and often consist of components that are not designed
with the stronger attacker model in mind, where the physical
host is compromised.

Numerous works [16], [77], [84], [91], [85], [80], [5], [88],
[52], [55], [92], [98], [68], [69], [97], [95], [56] show attacks
on TEEs. In particular, multiple works focus on side-channel
attacks, leaking critical information from the processor’s mem-
ory interface [91], processor caches [66], [78], [35], [17], [94],
branch predictors [49], [43], memory disambiguation [65],
and power consumption information [58]. Several of these
attacks exploit that the threat model of trusted execution
environments allows for much more powerful adversaries than
a regular attack in a native or virtualized attack setting: For
instance, Xu et al. [99] control the steps of an enclave by
controlling the page mappings, effectively leading to fine-
granular stepping through the victim program, comparable
to attaching a debugger. Moghimi et al. [65] slow down the
victim dramatically and amplify the leakage consequently. Van
Bulck et al. [86] implemented a generic framework for single-
stepping SGX enclaves that is now widely used in the scientific
community. Skarlatos et al. [80] take this approach one step
further by enabling the microarchitectural replay of operations
inside enclaves. While the security research on SGX focused
on attacking the workload inside SGX, research on AMD-
SEV so far has not focused on the stronger attacker model
but on breaking the security guarantees of AMD-SEV itself,
e.g., insufficient encryption [40], [95], [27], [97]. Wilke et al.
[98] implemented a single-stepping framework for AMD-SEV,
similar to SGX-Step [86]. Same as for SGX, single-stepping
on SEV enables more powerful attacks, e.g., leakage through
the deterministic ciphertext channel [55], [52].

AMD explicitly states that SEV-SNP cannot protect against
all possible side-channel attacks and shifts the responsibility

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241038
www.ndss-symposium.org



for additional side-channel protection to the owner of the
VM [6]. They argue that modern cryptographic libraries are
already hardened against side-channel leakage, e.g., using
constant-time programming techniques, as most of these at-
tacks do not rely on virtualization. However, attackers control-
ling the host can take advantage of their privileged position,
using techniques such as letting a victim VM page-fault upon
access to certain pages [99] or single-stepping a VM [86],
[55], [98] to synchronize with the victim and increase the
temporal resolution of their attack. This facilitates attacks
that are impossible or difficult to perform in traditional,
unprivileged settings. Thus, code deemed to be secure in these
settings might turn out vulnerable in an SEV-SNP context.
Furthermore, a complete virtual machine contains several off-
the-shelf components with non-cryptographic code, possibly
leaking critical information, e.g., inter-keystroke timings from
user input. Consequently, hardening an entire VM against side-
channel leakage, following constant-time principles, is likely
not practical given the extreme performance overheads and
also infeasible given the vast amount of code that has to be
vetted. AMD specifies that they do not prevent hypervisors
from tracking page accesses and performance counters. They
argue that the sensitive information is the data, not the code
executed and explicitly declare fingerprinting attacks based on
performance and page fault monitoring to be out of scope [6].

In this paper, we introduce CounterSEVeillance, a novel
side-channel attack leaking secret-dependent control-flow and
operand properties from performance counter data observed
while running SEV-SNP VMs. Our attack is the first to
leverage performance counter side-channel leakage to recover
secret data from SEV-SNP confidential VMs. This is a signif-
icant difference to prior work on Intel SGX enclaves, where
performance counters are halted during enclave execution [78],
[37]. CounterSEVeillance is based on a systematic analysis
of performance counter events in SEV-SNP VMs: We an-
alyze which performance counter events are observable for
the hypervisor from outside confidential VMs, exposing the
corresponding events to a potentially malicious hypervisor.
Comparing the performance counter values from running
nbench [63] natively and in an SEV-SNP VM shows that 228
performance counter events are observable from the hypervisor
during execution of the confidential VM, effectively leaking
side-channel information.

CounterSEVeillance records performance counter traces
with an instruction-level resolution by single-stepping the
victim VM using APIC interrupts in combination with page
faults. While we analyze a total of 335 performance counter
events, we exemplarily showcase the leakage from 6 of these
performance counters, Retired Instructions, Retired Branch
Instructions and Retired Taken Branch Instructions, Div Op
Count, and Div Cycles Busy, in four attack case studies:

First, we show that CounterSEVeillance is precise and
versatile enough to extract full RSA-4096 private keys from a
single execution of an Mbed TLS [57] (version 3.5.2) signature
process. For this purpose, CounterSEVeillance matches traces
of the Retired Instructions, Retired Branch Instructions and

Retired Taken Branch Instructions counters against a known
binary. This allows us to precisely recover the outcome of
any secret-dependent conditional branch within an SEV-SNP
VM. Our single-trace attack successfully recovers all of our
10 evaluation keys within less than 8min per key.

As a second case study based on the same performance
counters, we present the first side-channel attack on time-based
one-time password (TOTP) verification. With CounterSEVeil-
lance, we recover 6-digit TOTPs with only 31.1 guesses on
average from the COTP library [82], running in an AMD SEV-
SNP virtual machine.

As a third case study based on these performance counters,
we show that CounterSEVeillance can also leak the secret key
from which the TOTPs are derived, due to the non-constant-
time base32 decoder implementation of the COTP library.

Finally, as a fourth case study, with a focus on differ-
ent performance counters, we show that CounterSEVeillance
enables an attacker to construct a plaintext-checking oracle,
enabling secret-key recovery from the Hamming Quasi Cyclic
(HQC) key encapsulation mechanism (KEM) [2]. We use the
Div Op Count and Div Cycles Busy performance counters,
leaking information about the lengths of division results.
Schröder et al. [76] have shown that the length of division
results carries exploitable secret-dependent information on Zen
2. However, they reported a negative result on Zen 3, as they
found the timing variations of the div instructions to be too
subtle to observe any leakage. In contrast to their work, we are
the first to demonstrate divide-and-surrender-style leakage on
Zen 3, specifically when running the victim workload inside
AMD SEV-SNP, using CounterSEVeillance.

In contrast to prior attacks on SEV that manipulated the state
of the confidential VM [40], [95], [40], [27], [68], [53], [97],
[102], CounterSEVeillance is a passive side-channel attack.
Our attack works on fully patched AMD SEV-SNP systems,
including AMD’s VMSA Register Protection mitigation [9],
[52] against CipherLeaks [55]. Hence, further mitigations
against CounterSEVeillance are necessary and require trade-
offs between multiple factors like security of host and guest,
manageability of system load, and performance, orthogonal to
mitigations presented in prior work.

In conclusion, our paper shows that AMD’s assumption on
the limited security impact of performance counter informa-
tion, does not hold: With four case studies, we demonstrate
that CounterSEVeillance attacks leak sensitive information
from the SEV-SNP VM only by observing performance coun-
ters, despite AMD’s declaration of performance counters as
non-critical [6]. CounterSEVeillance also comes with the core
insight that moving an entire VM into an environment that
is exposed to a privileged adversary, introduces unforeseen
security risks: The attack surface is greatly increased as any
piece of the software stack, handling a variety of sensitive
information, can be attacked.
Contributions. In summary, we make the following contri-
butions:
• We perform a systematic analysis of performance counter

events in native and SEV-SNP contexts. Our analysis shows

2



that 228 performance counter events are directly observable
by the hypervisor on SEV-SNP VMs, resulting in our novel
CounterSEVeillance attack.

• We demonstrate a CounterSEVeillance attack on an Mbed
TLS RSA signature process. Our attack leaks a full RSA-
4096 private key with only a single trace and within less
than 8min.

• We present the first side-channel attacks on the verifica-
tion of time-based one-time passwords (TOTPs), imple-
mented in the COTP library [82]. For a 6-digit TOTP, our
performance-counter-based attack recovers the TOTP with
only 31.1 guesses on average. We additionally present an
attack recovering the secret key from which the TOTPs
are derived.

• We present the first divide-and-surrender-style leakage
on Zen 3, with a success rate of 99.5%, using our
CounterSEVeillance plaintext-checking oracle on the HQC
key encapsulation mechanism.

Outline. In Section II, we provide background and discuss
related work on the security of AMD SEV. In Section III, we
systematically analyze which performance counter events are
observable for a hypervisor attacking SEV-SNP. In Section IV,
we describe our framework. In Section V, we present our
performance-counter attack on an Mbed TLS RSA signature
process. In Section VI, we present our attacks on the time-
based one-time password library COTP. In Section VII, we
present our attack on HQC. In Section VIII, we contextualize
insights of our work and discuss potential mitigations. We
conclude in Section IX.
Responsible Disclosure. We disclosed our findings to AMD
on April 29th, 2024. AMD confirmed our findings on May
22nd, 2024 and they are planning to publish a security
brief (AMD-SB-3013) on October 14th, 2024. They are also
planning to introduce additional protections via their PMC
virtualization feature.

II. BACKGROUND AND RELATED WORK

In this section, we discuss background on AMD confidential
virtual machines (VMs), page-fault tracking, hardware perfor-
mance counters, and interrupt-based single-stepping. We cover
related works on the security of AMD SEV.

A. AMD Secure Encrypted Virtualization (SEV)

On a virtualization host, the hypervisor manages the VMs
(guests) and the resources assigned to them. To accomplish
this task, the hypervisor runs with a higher privilege level
than the VMs. In traditional virtualization, this means that the
hypervisor itself can access all resources of the VMs, including
register values and memory. Confidential VM technologies
are designed to protect VMs from the privileged hypervisor
by running them in a Trusted Execution Environment (TEE).
In contrast to earlier TEEs, like Intel Software Guard Ex-
tensions (SGX) [46], or ARM TrustZone [14], confidential
VM technologies run an entire operating system and mul-
tiple applications in the TEE, with a possibly much larger
attack surface. AMD’s confidential VM technology, Secure

Encrypted Virtualization (SEV), transparently encrypts and
decrypts the DRAM content of VMs [48]. The hypervisor
cannot trivially perform targeted modifications of the guest
data, as any change in the ciphertext of a guest will lead to
(ideally) unpredictable changes in the plaintext.
SEV-ES. The original incarnation of SEV did not protect
the CPU state, i.e., the register contents, from the hypervisor.
Hetzelt et al. [40] showed that a malicious hypervisor can
exploit this to read and write arbitrary memory inside the VM
and even disable memory encryption entirely. Werner et al.
[95] showed that the register contents obtained from targeted
interruptions of the guest contain enough information to spy
on TLS connections and perform application fingerprinting.
Buhren et al. [18] showed that power glitching can trick the
AMD secure processor into accepting a forged public key and
successfully verifying and booting their self-signed payload.

With the Encrypted State (ES) extension, the VM control
block is split into an unencrypted control area accessible to
the hypervisor and an encrypted save area used by the CPU to
automatically store and restore the CPU state. The original
SEV-ES extension encrypted pairs of two 64 bit registers
in single AES-128 blocks in the save area. Li et al. [55]
showed that this allows the hypervisor to make fine-grained
observations about changes in register states and even recover
values of the registers. AMD addressed this issue by including
a nonce in the encryption of the register state [52].
SEV-SNP. To mitigate malicious hypervisors corrupting the
memory contents of a VM by overwriting encrypted memory
or remapping guest memory pages, AMD introduced the
Secure Nested Paging (SNP) extension [6]. SEV-SNP miti-
gates replay and remapping attacks [40], [27], [68] and the
ciphertext reuse attack by Wilke et al. [97]. When accessing
an invalidated page, the VM now receives an exception and
can decide how to handle the invalidated page. The VM can
validate the page, or it can deny this and, e.g., terminate with
an error. In order to meet the desired integrity of SEV-SNP,
the guest VM should never validate memory corresponding to
the same guest physical address more than once [6]. Still, fault
attacks exploiting architectural bugs or physical properties may
yield full compromises of AMD SEV-SNP [102].

Wang et al. [92] demonstrated a software-based power side-
channel attack on AMD SEV-SNP. By measuring the power
consumption, they infer which instructions are executed by the
VM and, in some cases, obtain information about the operands.

B. Page-Fault Tracking

Page faults are exceptions triggered when memory is ac-
cessed in a way that is not allowed for a specific memory
region. Access permissions are configured in the page tables.
Page faults are relatively common and are used to implement
principles like on-demand page mapping or copy-on-write. In
a traditional system, they are handled by the kernel. Attackers
operating at that permission level have permission to access
any data on the system. This means that, in the traditional
model, any data leaked by memory accesses is insignificant

3



from a security standpoint. In contrast, with TEEs, the un-
trusted operating system or hypervisor is in charge of the page
tables, and page faults become relevant side channels [99],
[68], [53].

In SEV, the hypervisor can configure the access permissions
for each virtual machine on a page-by-page basis via nested
page tables. This is required since the hypervisor must be
able to allocate pages to the guest physical address space
dynamically. However, a malicious hypervisor can use those
access permissions to track the execution of specific programs
or entire operating systems.

For example, by unsetting the present bit on every page,
every memory access on any page will cause a vmexit with
a nested page fault, informing the hypervisor on which page
was accessed. The hypervisor can determine access patterns
with page size granularity by resetting the present bit for a
page until the subsequent nested page fault occurs. While this
technique is very slow, it allows an attacker to fingerprint the
running software in a VM and find the required guest physical
page numbers for subsequent attacks.

The attacker can start with more selective attacks when the
required pages are known. Depending on the attack target, the
attacker might only be interested in write operations, meaning
they can remove the writable permission on the page. In
the case of secret-dependent data access, they might only turn
off the present bit for specific pages to recover the secret
by observing the access patterns.

Another strategy is turning off the NX bit, which means
the attacker will receive an interrupt when the guest tries to
execute code from the target page. These interrupts can be
used to find the entry point to a relevant part of the code
without slowing down the system until the target code is about
to be executed. The attacker can then switch to other attack
primitives, like single-stepping, to have more fine-grained
control over the execution.

C. Hardware Performance Counters

Hardware performance counters are CPU hardware registers
that count certain hardware events, e.g., cache misses, branch
mispredictions, and instructions executed. They can be used
to determine application bottlenecks [72], identify resource-
hogging applications or functions, and even detect some types
of attacks [104], [50], [51], [25], [23], [19].

To monitor performance data, kernel-level code can select
multiple performance-related events via the PerfEvtSel
Model Specific Registers (MSRs). This will cause the CPU to
count the occurrence of the selected event in the corresponding
PerfCnt MSR. The specific events that can be tracked
depend on the processor family and can be found in the Pro-
cessor Programming Reference for the specific processor [10].

To facilitate performance counter measurements from user
space, Linux offers the perf subsystem [72]. Due to security
concerns, the perf subsystem prevents unprivileged users from
accessing the hardware performance counters by default [29],
restricting their use in traditional, unprivileged attack scenar-

ios. However, an attacker controlling the host operating system
or hypervisor has full access to them.

Contrary to Intel’s SGX [44], AMD’s SEV does not disable
performance counters when executing an SEV-enabled VM.
Since SEV is developed for hosting confidential VMs on
a (foreign) cloud provider, the cloud provider might have
a legitimate interest in using performance counters to gain
some insight into performance bottlenecks or to detect attacks
from VMs. According to AMD [6], preventing application
fingerprinting via performance counters is not in scope for
SEV-SNP, since code is usually not confidential, but data is. In
this paper, we demonstrate that the statement that performance
counters can only leak information about the executed code,
is false.

D. Interrupt-Based Single-Stepping

CounterSEVeillance requires precise control over the exe-
cution of the VM to inspect performance counters before and
after the execution of single instructions. However, processor
features commonly used for single-stepping regular applica-
tions, such as the single-step trap flag or hardware breakpoints,
are disabled when executing a TEE in non-debug mode.

It is, however, possible to implement an (albeit less reliable)
form of single-stepping by trying to interrupt the TEE shortly
after allowing it to start, only allowing a single instruction
to finish. Van Bulck et al. [86] have introduced the SGX-Step
framework to single-step SGX enclaves. Similarly, Wilke et al.
[98] have introduced SEV-Step for SEV-SNP VMs. These
frameworks have been used in multiple prior attacks to gain
instruction-granular control over the victim enclave [84], [85],
[74], [16], [67] respective VM [102], [98].

Before transferring control to the VM via the vmrun
instruction, SEV-Step arms the APIC timer to interrupt the
core shortly after the VM resumes. The APIC timer interrupt
causes a vmexit, transferring control back to the hypervisor.
The specific timing depends on factors like the clock speed,
CPU utilization, kernel- and hardware settings, and potential
differences in the silicon. Since the hypervisor controls the
system, the attacker can mitigate those issues by fixing the
clock speed to a value known to work well, reserving an entire
core for the target VM, and pinning the correct kernel and
hardware parameters. The attacker can profile the hardware in
advance to determine the timer interval and to account for any
remaining variables.

Each attempt to single-step over an instruction in the VM
can have one of the following outcomes: In the desired case,
exactly one instruction is executed (single-step). If the VM is
interrupted too early, no instruction is executed (zero-step) and
the attacker retries. If the VM is interrupted too late, multiple
instructions are executed (multi-step), reducing the temporal
resolution of the attack.

SEV-Step uses the Retired Instructions performance counter
to distinguish between zero-, single- and multi-steps. This
method works even with VMSA Register Protection enabled
and reports the exact number of instructions executed in a
single vmrun.

4



The guest operating system relies on host-injected timer
interrupts for preemptive task rescheduling. While single-
stepping, the host does not forward timer interrupts to the
guest. Consequently, inside the VM, the victim program is
never interrupted or preempted, as the guest does not receive
timer interrupts.

III. SYSTEMATIC ANALYSIS OF EXPOSED PERFORMANCE
COUNTER EVENTS

In this section, we present a systematic analysis of hardware
performance counter events and show that various events leak
from AMD SEV-SNP confidential virtual machines (VMs)
to the hypervisor. We analyzed a total of 335 hardware
performance events available under Linux 6.6.0 running on
an AMD EPYC 7313P CPU. Out of these 335, we find
that 100 events always return 0, regardless of our tests and
regardless of whether they are observed for a native process or
a confidential VM. Natively, we successfully observe activity
on 226 events while running the nbench benchmark [63]
(version 2.2.3). When running nbench in a confidential VM,
we observe activity on 228 events. However, 7 events that
show activity in the native setting show no activity while
running the confidential VM. Vice versa, 9 events that show
activity while running the confidential VM show no activity
in the native setting. That is, almost all hardware performance
events (219) that are observable in a native setting are also
observable in the confidential VM setting, indicating the
significant amount of information exposed to a potentially
malicious hypervisor. In the following, we detail the setup
for our systematic evaluation.
Experimental Setup. We compare the performance counter
values from running nbench natively and inside a confidential
VM. We choose nbench, since it performs a wide variety of
individual, CPU-intense benchmarking tasks, like sorting, bit
manipulation, data compression, and neural network compu-
tations, covering most of the performance counter events we
can monitor.

First, we prepare a list of the available hardware perfor-
mance counter events by selecting all events from the perf
list output labeled as Kernel PMU event, resulting in 335
available events.

We then execute nbench natively on the host while mon-
itoring each event with the Linux perf stat command.
To reduce noise from other activity on the system, we pin
the measurement to a fixed, isolated core. As we also want
to record events triggered by kernel code, we do not restrict
our measurement to userspace code. Our CPU has 6 hardware
counters. Consequently, we can, at most, monitor 6 events
together in a single run. However, some events require 2
hardware counters [10], requiring runs with even fewer events
in parallel.

We finally repeat the measurement for an SEV-SNP VM
on an isolated core running nbench. On the hypervisor (i.e.,
outside the VM), we again monitor each performance counter.
To constrain the measurement to only the VM, without
recording any influences from the hypervisor, we use the

0 20 40 60 80 100 120

n = 0

r = 0

r < 0.1

0.1 ≤ r < 0.8

0.8 ≤ r < 1.2

1.2 ≤ r < 10

r ≥ 10

100

7

4

12

111

44

48

Number of performance counter events
Fig. 1. Histogram from comparing performance counter values from running
nbench natively with running it in an SEV-SNP VM. For 100 events, the
performance counter value n is 0 after running nbench natively, i.e., nbench
did not trigger the event. For 7 events triggered natively, the performance
counter value v is 0 after running nbench in the virtual machine, i.e., the event
was not observed. Out of the remaining 219 events observable for nbench
running in a virtual machine, the ratio r = v

n
is between 0.8 and 1.2 for 111

of them.

perf kvm stat command with the --guest flag. This
is explicitly supported by the hardware, by accordingly set-
ting the HG_ONLY bitmask when programming the hardware
counter [12]. Similar to the native measurement, this also
captures events triggered by the guest kernel.
Results. As stated initially, when executing nbench natively
with perf stat, we observe that the benchmark triggers
226 out of 335 performance counter events in our list. When
executing nbench within an SEV-SNP VM, we observe that
this triggers 228 events. Out of the 226 events triggered
natively, only 7 are not triggered by the VM.

Analyzing these 7 events in more detail showed that they
have low counter values below 18 000, even when nbench is
executed natively. Hence, we conclude that they are triggered
by the natively running kernel and not by the benchmark
itself. Among these events are Interrupts Taken and Retired
cpuid instructions. When executing a VM, interrupts cause
a vmexit for the guest and are counted for the hypervisor
instead. Similarly, the cpuid instruction is intercepted and
emulated by the hypervisor.

Additionally, we observe 9 performance counter events
within the SEV-SNP VM, which are not triggered by nbench
on the host. Among these events are sse_avx_stalls
and various performance counters related to floating point
operations. We assume this is caused by operations related
to handling the confidential VM or other workloads inside the
full Ubuntu installation running inside the VM, which trigger
events that do not occur on the isolated core on the host.

Out of the 100 performance counter events that showed
no activity, neither natively nor in the VM, 66 are iommu
events. For instance, on our system, perf reports 4 groups of
amd_iommu events, each with multiple specific performance
events. However, 2 out of 4 groups do not report any data,
accounting for 46 performance counter events. We hypothesize

5



that this might be due to the generic presence of the same per-
formance counter events for one microarchitecture, regardless
of the existence of the corresponding hardware components
on the specific CPU model.

For each of the remaining 219 events triggered both natively
and in the VM, we compute the counter ratio r = v/n between
the virtualized v and the native n execution of the benchmark.

For 111 events, the ratio r lies between 0.8 and 1.2,
indicating that they are mostly unaffected by virtualization
overhead. Among these are events like Retired Instructions,
Retired Branch Instructions, Retired Taken Branch Instructions
or Retired SSE/AVX instructions, caused by the computation-
heavy CPU benchmark.

For 92 of the events, the ratio r is higher than 1.2, showing
that they are positively correlated with virtualization overhead.
Among these events are several events related to the L1 cache,
likely caused by cache contention from other processes inside
the VM, sharing the same core, which did not happen in the
same way on our isolated core in the native setting. With
nbench running in the VM, we also observe an increase in TLB
accesses by approximately a factor of 5, which is explained
by the longer page walk required for nested paging.

For 16 of the events, the ratio r is lower than 0.8, showing
that they are negatively correlated with virtualization overhead.
Interestingly, we see substantially fewer last-level cache hits
and misses in the virtualized setting but a higher number of
L2 cache hits and misses. This is surprising but indicates that
the L2 cache is more successful when the workload is running
inside a VM. This could be due to differences in the memory
allocation, causing a different contention profile on the L1 and
L2 caches.

Figure 1 summarizes our results. While attacks using other
performance counters might also be possible, in the following,
we select Retired Instructions, Retired Branch Instructions,
Retired Taken Branch Instructions, Div Op Count and Div
Cycles Busy as examples in our proof-of-concept attacks.

IV. THE COUNTERSEVEILLANCE ATTACK

CounterSEVeillance can reveal secret information if the
victim executes any code that influences performance coun-
ters in a secret-dependent way. Since there are performance
counters for a variety of microarchitectural elements, we can
use CounterSEVeillance to leak the same information as side
channels on these microarchitectural elements. We can leak
the same information as side channels on, for instance, the
cache [71], [100], branching logic [1], [30], the TLB [42],
[36] or the integer divider [76]. However, in the SEV-SNP
threat model with a privileged adversary, CounterSEVeillance
leakage achieves a significantly higher resolution and accu-
racy: Instead of relying on side-channel measurements of a
state change of the microarchitectural element, we have an
architectural interface (performance counters) providing the
desired information for each operation. Performance counters
directly tell us whether the operation involved a cache hit
or miss, a TLB hit or miss, or how many cycles a division
required, or whether it involved a branch taken or not taken.

Track Start Page

Track Target Page(s)

Single Step
Track Other Pages

Start page hit

Target
page
hit

Non-Target
page hit

End page hit

Fig. 2. Overview of the different states during recording. After the victim
jumped from the start page to a target page, we start to single-step the VM.
Single-stepping is paused when the victim calls a function irrelevant to the
attack, residing on a non-target page. Single-stepping is continued when the
called function returns to a target page and finally stopped when it jumps to
the stop page.

In this section, we focus on branch outcomes as an illustrative
example of the leakage of CounterSEVeillance, i.e., we leak
the secret data going into a branch decision. The attack
consists of two phases. In the first phase, we generate a trace
of the victim program, using an extended version of SEV-
Step [98]. The trace includes information about all branch
outcomes in the single-stepped section. In the second phase,
we combine this data with knowledge of the executed code
to recover data used for branching decisions. This second
phase is completely offline and requires only a single trace. In
Section VII we further show that CounterSEVeillance is not
restricted to recovering branch outcomes and can also leak
exploitable information about the results of div instructions.

A. Trace Recording

In the first phase, we record a trace of events while single-
stepping through the attacked code in the victim SEV-SNP
VM. In the following paragraphs, we outline how we use
page-fault tracking to limit the single-stepping to the attacked
code. We provide a detailed description of the start of single-
stepping, the recording of events, the skipping of irrelevant
functions, and the stopping of the recording.
Limiting Single-Stepping via Page-Fault Tracking. To
synchronize attacker and victim, the attacker needs to know
when the VM starts and stops executing the attacked code
sequence. With page-fault tracking, we synchronize at a page-
size granularity, minimizing the amount of code we have to
single-step. For page-fault tracking, we identify the target
page(s), a start page, and an end page. The target page(s)
contain the code we want to single-step. To prevent other
code that might also be executed, residing on the same
page(s), from spuriously activating single-stepping, we only
start single-stepping when the victim jumps from the start

6



???

???

???

rip

Single Step:
retired branches = 0
branches taken = 0

no branch

???

???

rip

(a) no branch

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 0

conditional branch,
not taken

???

???

rip

(b) conditional branch, not taken

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 1

taken branch

???

???
rip

(c) taken branch (unconditional or conditional)

Fig. 3. Control-flow recovery by reading performance counters after each
single-step: If the Retired Branch Instructions counter has not increased, the
instruction executed was not a branch (a). If the Retired Branch Instructions
counter has increased but Retired Taken Branch Instructions has not, the
instruction executed was a conditional branch that has not been taken (b).
If both counters have increased, the instruction executed was either a taken
conditional or an unconditional branch (c).

page to a target page. We stop single-stepping when the victim
jumps to the stop page. For example, when single-stepping an
entire function, the start and end page is the page containing
the caller of the function. Figure 2 illustrates the transitions
between the different states during recording.

Li et al. [54] showed that it is possible to identify pages in
memory by observing page access patterns, i.e., for page-fault
tracking, the attacker can learn the guest physical addresses
of the start, end, and target pages. Thus, we assume that the
attacker determined the correct pages in a previous profiling
step in advance.
Starting Single-Stepping. We begin the attack by tracking
execute accesses (execute-tracking) on the start page. Unless
the victim executes code from this page, this is undetectable
and has no performance impact. When the guest execution
hits the start page, we track our target pages instead. We start
single-stepping as soon as the guest jumps to a target page.
Recording Events from the Target Function. When we
enter the target function, we start execute-tracking all guest
pages except our target pages. We continue single-stepping
while recording the increments of the Retired Instructions,
Retired Branch Instructions and Retired Taken Branch Instruc-
tions performance counters. The Retired Instructions counter
tells us how many instructions we missed in potential multi-
steps. We use the Retired Instructions counter to recover from
these cases during post-processing. As shown in Figure 3,
from the Retired Taken Branch Instructions counter, we can
directly derive whether the executed instruction was a taken
(conditional) branch. The Retired Branch Instructions counter
tells us whether an instruction was a not-taken branch or
another instruction.
Skipping Irrelevant Functions. Whenever we receive a
page fault on another page than our target, we stop single-
stepping, untrack all pages, and start execute-tracking solely

the target pages. This usually happens when the tracked code
calls a function, which the compiler often places on different
pages. Therefore, we record this event as a function call
in our data. This allows irrelevant functions to run without
any performance impact while minimizing the amount of
unnecessary data recorded. When the called function returns,
we receive a page fault on our target page, triggering the restart
of the single-stepping while recording a function return event
in our data. We also track all other pages again to prepare for
the next function call or return.
Stopping Single-Stepping. We know our target code has
finished when we receive a page fault on the stop page. We
stop single-stepping and turn off all page-tracking, allowing
the guest to continue running normally. We save the generated
trace, which consists of single-step, multi-step, function call,
and function return events, for offline post-processing.

B. Post-Processing of Single-Step Traces

Once the data collection is complete, we can evaluate our
results offline. We match the disassembled target program
binary against the exact instruction patterns in the trace.
Different compiler versions or optimization levels might cause
changes, complicating the program flow reconstruction. We
only partially automated the post-processing, where we still
manually need to map some points in the trace to points in
the disassembled code.
Matching Traces against the Instruction Pattern. By
comparing the values of the Retired Branch Instructions and
Retired Taken Branch Instructions, we can infer the branch
history from the entire single-stepped execution with only a
single trace. The execution of unconditional branches (e.g.,
call, ret, and jmp) will cause both performance counters
to increment by one. We can use this fact for orientation, since
the branch instructions create a repeating pattern in the data.
We can also use the page-fault data as synchronization points
to reliably align the trace with the instruction pattern from
analyzing the binary. Since we know which instruction was
executed in our single-step trace, we can find the single-step
event corresponding to a conditional branch instruction and
check the Retired Taken Branch Instructions counter for this
point in time. If it is 1, we know the branch condition was
true. If it is 0, we know the branch condition must have been
false. While the post-processing for single-steps could already
be applied as described above, we found it necessary to extend
our post-processing to allow for multi-steps as well.

In our tests, there was a small chance that multiple in-
structions would execute in a single vmrun. We performed
an empirical analysis of the multi-step probability. For an
uninterrupted sequence of 1 000 instructions without function
calls, we observed multi-steps in 19.3% of the traces. Reduc-
ing this sequence to 500 instructions still incurred multi-steps
in 13.4% of the traces. Over all executed instructions, we
observe a 0.02% probability of a multi-step when attempting
to perform a single-step. Thus, to allow our post-processing to
handle these remaining 0.02% correctly as well, we show how

7



1 for(;;) {
2 // ...
3 // ei contains the current bit of the exponent
4 if (ei == 0 && state == 1) {
5 MBEDTLS_MPI_CHK(mpi_select(&WW, W,
6 w_table_used_size, x_index));
7 mpi_montmul(&W[x_index], &WW, N, mm, &T);
8 continue;
9 }

10 state = 2;
11 nbits++;
12 exponent_bits_in_window |= (ei<<(windowsize-nbits));
13 if (nbits == windowsize) {
14 for (i = 0; i < windowsize; i++) {
15 MBEDTLS_MPI_CHK(mpi_select(&WW, W,
16 w_table_used_size, x_index));
17 mpi_montmul(&W[x_index], &WW, N, mm, &T);
18 }
19 MBEDTLS_MPI_CHK(mpi_select(&WW, W,
20 w_table_used_size, exponent_bits_in_window));
21 mpi_montmul(&W[x_index], &WW, N, mm, &T);
22 state--;
23 nbits = 0;
24 exponent_bits_in_window = 0;
25 }
26 // ...
27 }

Listing 1. The modular exponentiation loop of Mbed TLS’
mbedtls_mpi_exp_mod function. By observing the outcome of
the branching condition in Line 4, we can leak the private key bits.

we can still infer the same information as from a single-step
in most cases in the following.
Recovery from Multi-steps. Given our attempt to single-step,
multi-steps also involve only a small number of additional
steps, i.e., most likely a single missed branch. As we have
precise performance counter information, we can often still
infer the precise operations and secret inputs for the multi-
step time frame.

If a multi-step contains only one unknown branch instruc-
tion, we can always recover the outcome of the unknown
branch. From the Retired Taken Branch Instructions perfor-
mance counter, we know the number b1 of branches actually
taken during the multi-step. From analyzing the binary, we
know the number b2 of other branches that must have been
taken. By comparing these two numbers, we can reconstruct
whether the unknown branch was taken: If b1 = b2 + 1, then
the unknown branch was taken. If b1 = b2, then the unknown
branch was not taken.

In the less likely case that a multi-step contains two or more
unknown conditional branch instructions with branches of
different lengths, we can still recover the outcome by matching
the subsequently executed instructions (and page faults). Note
that in the case of a multi-step, we still know precisely how
many instructions were executed from the performance counter
Retired Instructions, and the number of branches taken from
the performance counter Retired Branch Instructions. Using
the disassembled binary and the performance counter data, we
can define constraints to identify all code paths that possibly
could have been taken, e.g., using Ghidra [28], or more
automated with angr [90]. If the constraints result in a single
path, we have successfully recovered all branch outcomes.
Otherwise, the attacker may include further constraints in
the analysis, e.g., information about memory accesses, or

0 10 20 30 40

page fault
taken

branch

Step
(a) ei = 0

0 10 20 30 40

page fault
taken

branch

Step
(b) ei = 1

Fig. 4. Event patterns for single iterations of the exponentiation loop. If
ei is 0, the attacked branch instruction in Step 20 is not taken. If ei is
1, the attacked branch is taken, and a characteristic sequence of calls to
mpi_montmul and mpi_select is executed. This sequence is used for
reliable multi-step recovery.

other performance counters (e.g., Div Op Count or Retired
MMX/FP Instructions) depending on the attack target. Still, in
some cases, the analysis may yield multiple possible solutions.
While this means we do not have the exact result, it tells us
precisely which bits of the secret are unknown. This can be
useful for a brute-force attack, but in some cases, it even allows
for a direct derivation of the secret, e.g., for RSA, as the secret
has to follow a specific structure [41].

Finally, the impact of multi-steps can be limited by page-
faulting whenever the victim code jumps or calls into an-
other page. This causes any multi-step to end and effectively
acts as a synchronization point. Code that frequently calls
other functions, therefore, is straightforward to attack with
this method since the impact of a multi-step is negligible.
Performance-optimized, concise code without function calls,
such as a string-comparison loop, can be more challenging to
attack since it consists of few instructions and does not jump
or call into other pages. Still, we show in Section VI that
attacks on such code are practical.

V. COUNTERSEVEILLANCE ATTACK ON RSA

In this section, we demonstrate that CounterSEVeillance
is precise and versatile enough to recover full RSA-4096
keys from a single trace of an Mbed TLS [57] (version
3.5.2) signature process. Like prior work [78], [58], [32], we
demonstrate an attack on the windowed square-and-multiply
implementation of Mbed TLS. In contrast to multiple prior
attacks on Mbed TLS RSA in trusted execution environments,
our attack does not depend on noisy timing [78], [32] or
power [58] side channels. Instead, our noise-free performance
counter measurements facilitate fast key recovery within less
than 8min, emphasizing the additional threat from exposed
performance counters.
Threat Model and Attack Setup. The attacker’s goal is to
steal the RSA secret key from the victim process running in
an SEV-SNP VM on the attacker’s host computer. The victim

8



process performs RSA-4096 signatures using the Mbed TLS
library. The attacker knows that the victim runs an unmodified,
up-to-date Mbed TLS library, e.g., version 3.5.2 in our case.1

The attacker can obtain the guest physical addresses to which
the victim binary is mapped via page tracking [54], enabling
the attacker to detect the start and end of the signature process.
Like prior works [78], [58], [32], we demonstrate our attack
with a fixed window size of 1, since Liu et al. [59] have shown
that attacks on window length 1 can be extended to arbitrary
window lengths.
Attack Description. To recover the secret key, we
target a key-dependent conditional branch in the
mbedtls_mpi_exp_mod function, which is used to
perform modular exponentiation in Mbed TLS. Listing 1
shows the relevant part of mbedtls_mpi_exp_mod. With
a window size of 1, the condition in Line 13 will always be
true and will be eliminated by the compiler when compiling
with the default compiler flags from the Mbed TLS Makefile.
Additionally, the compiler will eliminate the loop in Line 14.

The code loads the current bit of the key in ei. Line 4
decides on a code path based on ei and state. The state
variable is used to skip leading zeroes and is never zero during
the actual attack. Therefore, ei is the only unknown variable
affecting which code path will be taken in each iteration.

To efficiently target the correct branching instruction, we
find function calls to mpi_select in our generated trace.
To leak the branch outcome, we iterate backwards through the
recorded single-steps until we either find a branching instruc-
tion or another function call. The last conditional branch in-
struction before mpi_select is our secret-dependent target.
We observe three patterns in the trace, as visible in Figure 4. In
the first pattern, the observed branch is not taken. In our target
binary, this means that ei was 0 (Figure 4a). In the second
pattern, the observed branch is taken, which means that ei
was 1 (Figure 4b). The third pattern (highlighted in blue in
Figure 4b) is caused by consecutive calls to mpi_montmul
in Line 17 and mpi_select in Lines 19 and 20, without a
branch instruction in between. This pattern only appears when
ei was 1 and is used for multi-step recovery.

Generating a full trace of a 4096-bit signature process
requires about 200 000 single-steps. Due to the large number of
executed instructions, our data also contains some multi-steps.
However, since mpi_select and mpi_montmul reside on
different pages than the target function, calling them causes
page faults, limiting the extent of multi-steps. This leaves us
with two cases, depending on the length of the multi-step.

If the multi-step only contains one conditional branch with
an unknown outcome, we can directly recover its outcome as
described in Section IV-B.

With a larger multi-step, this direct recovery is not possible
anymore. However, we can detect the execution of the branch-
less code between mpi_select and mpi_montmul in
Line 19. Since this pattern only occurs in the branch that gets

1We actually found that the attack also works for slightly different library
versions and compiler versions.

taken if ei is 1, we can recover the branch information even in
the presence of longer multi-steps. Thus, with this approach,
we successfully recover the full 4096-bit RSA private key,
without any bit errors, in a single execution trace.
Evaluation. We evaluate our attack on an AMD EPYC
7313P CPU, running Ubuntu 22.04.2 LTS as the host operating
system and Ubuntu 22.04.2 LTS in the guest. We repeated
the attack 10 times, each with a different private key. We
successfully recovered the entire private key on every single
attempt. The average recording time for each trace was 428.9 s,
with a minimum of 420 s and a maximum of 439 s.

VI. COUNTERSEVEILLANCE ATTACKS ON TOTP
VERIFICATION

In this section, we present two CounterSEVeillance attacks
on a TOTP verification process. On a confidential VM, TOTPs
might serve as a second authentification factor for login to
the services running inside the VM, e.g., SSH or a web
application. Our attacks exploit non-constant-time behaviour
in the COTP library [82], at two different phases of the
verification process:

We first demonstrate an attack on the comparison between
the TOTP entered by the user and the expected, correct
TOTP. Our attack guesses the correct 6-digit TOTP with 31.1
attempts on average, which is a significant reduction from the
500 000 average attempts required for a brute-force attack.

Finally, from a single execution of a TOTP verification, we
also leak the secret key from which the TOTPs are derived.
Consequently, having the secret key, the attacker can generate
correct TOTPs offline at will and thereby completely bypass
the second factor in this two-factor authentication setting. We
recover the secret key within less than a second, with a success
rate of 86%.

A. Recovering Time-Based One-Time Passwords

Threat Model and Attack Setup. The attacker’s goal is
to guess the TOTP in a two-factor authentication running
in an SEV-SNP VM on the attacker’s host computer. The
two-factor authentication is default-configured such that each
TOTP has 6 digits and is valid for 30 s. The attacker is able to
perform 2 TOTP guesses per second, i.e., 60 guesses before
the TOTP expires.2 We assume the attacker can make side-
channel observations about when the TOTP verification starts,
e.g., via page-fault tracking [54].

For our proof-of-concept, we implement a victim program
repeatedly asking for TOTP tokens and verifying them using
the totp_verify function, provided by the COTP library.
We deploy the victim program to the SEV-SNP VM. We
prepare the host to perform CounterSEVeillance, as described
in Section IV-A.
Attack Description. Our first attack is enabled by a secret-
dependent conditional branch in COTP’s totp_compare

2Rate-limiting TOTP tokens is challenging as an attacker could exploit the
rate-limiting as a denial-of-service attack on the actual user. Consequently,
TOTP services typically implement no strict rate-limiting, in particular not
for guesses from different IP addresses.

9



1 COTPRESULT totp_compare(OTPData* data, const char* key,
2 int64_t offset, uint64_t for_time)
3 {
4 char time_str[data->digits+1];
5 memset(time_str, 0, data->digits+1);
6 if (totp_at(data, for_time, offset, time_str) == 0)
7 return OTP_ERROR;
8 for (size_t i=0; i<data->digits; i++) {
9 if (key[i] != time_str[i])

10 return OTP_ERROR;
11 }
12 return OTP_OK;
13 }

Listing 2. COTP’s totp_compare function is vulnerable to CounterSEVeil-
lance, as the conditional branch in Line 9 leaks whether the guessed TOTP
byte was correct.

function, which is called by totp_verify to compare a
user-provided TOTP against the expected and correct TOTP
for a given secret and time. Listing 2 shows the implementa-
tion of totp_compare. After obtaining the correct TOTP for
the time given as for_time in Line 6, the function compares
the user-provided TOTP key with it, by iterating over each
digit in the loop starting at Line 8. In Line 10, the function
performs an early exit on the first mismatching digit (Line 9).

With the Retired Taken Branch Instructions performance
counter, the attacker can directly observe when the condition
for the early exit is true, see Figure 5. This allows the attacker
to guess each of the 6 digits of the TOTP individually, one
after another. The attacker starts by probing the candidates 0,
1, 2 . . . 9 for the first digit. When the attacker observes that the
early exit is not taken for the current candidate, the attacker
knows that the guess for the digit was correct. The attacker
then continues with the first digit fixed to the correct candidate
and guessing the second digit, again observing whether the
early exit is taken and continuing with the next guess if it
is not. The attacker repeats this until all 6 digits and hence
the entire TOTP is known. In the worst case, this requires 10
guesses per digit and, consequently 60 guesses in total. On
average, we expect the attacker to succeed within 30 guesses.

To recover the length of the matching token, we require a
section of 35 to 70 single-steps directly after a function call.
In the case of multi-steps in the relevant part of our trace,
we repeat the measurement. Due to the speed of the tracing
process and the fact that the critical section of the trace is
small, multi-steps did not have a significant impact on the
reliability of our attack.
Evaluation. We evaluate our attack on an AMD EPYC
7313P CPU, running Ubuntu 22.04.2 LTS as the host operating
system and Ubuntu 22.04.2 LTS in the guest. We repeat the
attack 50 times, each with a different TOTP. In all 50 cases,
we successfully guess the full TOTP within the 30 s validity
timespan. Due to the fast tracing process, even with occasional
multi-steps in the relevant section of the trace, we were able
to repeat the measurements without impacting the reliability
of the attack. On average, we require 31.1 guesses for a single
TOTP, which is close to the expectation of 30 guesses. The
full end-to-end attack (including the trace analysis), until the
successful login takes 18.14 s on average.

0 5 10 15 20 25

taken

retired

Step
(a) 2 correct digits

0 5 10 15 20 25

taken

retired

Step
(b) 3 correct digits

Fig. 5. Event trace of the TOTP verification. The highlighted branch is taken
on the first mismatching digit, allowing the attacker to guess the TOTP digit-
by-digit.

Effectively, totp_compare performs a byte-by-byte com-
parison of the digits, with an early exit on the first mismatching
digit, similar to the standard C function memcmp. Conse-
quently, other applications or libraries using similar compar-
isons against a secret byte sequence might also be vulnerable
to similar attacks, as they are not explicitly developed for usage
in TEEs. For example, we found otplib [101], another TOTP
library, implemented in TypeScript, to use a regular string
comparison, which does not have constant-time guarantees.

B. Recovering the Secret Key

Threat Model and Attack Setup. The attacker’s goal is to
leak the secret key from which the TOTPs for a target user
in a two-factor authentication process are derived. Like in the
previous attack, the two-factor authentication process runs in
an SEV-SNP confidential VM on the attacker’s host computer.
The victim program again uses COTP’s totp_verify func-
tion to verify the TOTPs. We again assume the attacker to be
able to make side-channel observations about when the TOTP
verification starts. However, for this attack, we do not assume
the attacker to be able to perform multiple TOTP guesses.
Attack Description. Our second attack is enabled by a
secret-dependent conditional branch in COTP’s base32 de-
coder. COTP internally stores the secret key in base32
form and decodes it on demand when a correct TOTP
for a given time is needed to verify against. In particu-
lar, totp_verify calls totp_compare, which in turn
calls totp_now and otp_generate, which invokes the
base32 decoder otp_byte_secret. As depicted in List-
ing 3, the decoder iterates over the base32-encoded secret
data->base32_secret, grouped into blocks of 8 base32
characters (Lines 10 and 12). To obtain the decoded value of
each base32 character, the decoder linearly searches for the
base32 character in the OTP_DEFAULT_BASE32_CHARS
array (Line 15). As soon as the matching base32 character
is found (Line 16), the corresponding index is stored as the
decoded value (Line 17), and the search is stopped (Line 19).
On our system, the compiler transforms the branch in Line 16

10



1 static const char OTP_DEFAULT_BASE32_CHARS[32] = {
2 ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,
3 ’L’,’M’,’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,
4 ’W’,’X’,’Y’,’Z’,’2’,’3’,’4’,’5’,’6’,’7’
5 };
6

7 COTPRESULT otp_byte_secret(OTPData* data, char* out_str)
8 {
9 //...

10 for (size_t i = 0; i < num_blocks; i++) {
11 unsigned int block_values[8] = { 0 };
12 for (int j = 0; j < 8; j++) {
13 char c = data->base32_secret[i * 8 + j];
14 int found = 0;
15 for (int k = 0; k < 32; k++) {
16 if (c == OTP_DEFAULT_BASE32_CHARS[k]) {
17 block_values[j] = k;
18 found = 1;
19 break;
20 }
21 }
22 //...
23 }
24 //...
25 }
26

27 return OTP_OK;
28 }

Listing 3. COTP’s otp_byte_secret function is vulnerable to Coun-
terSEVeillance, as the search for the matching base32 character (Line 15)
immediately aborts as soon as a match is found (Line 19).

into a jnz (jump if not zero) instruction, i.e., the branch
condition is inverted. Consequently, the number of times the
branch is taken matches the index of the base32 character
in the OTP_DEFAULT_BASE32_CHARS array. With Coun-
terSEVeillance, an attacker can simply count how often the
branch is taken for each base32-encoded character to obtain
its index in the array and, consequently, its value. Figure 6
shows an example of this.
Evaluation. We again evaluate our attack on an AMD EPYC
7313P CPU, running Ubuntu 22.04.2 LTS as the host operating
system and Ubuntu 22.04.2 LTS in the guest. We repeat the
attack 86 times with a secret key consisting of 16 base32
characters. In 74 out of 86 cases, i.e., with a success rate
of 86%, we recover the entire secret key within less than a
second, without any errors. The remaining 12 cases failed due
to multi-steps over multiple base32 characters, i.e., multiple
iterations of the loop starting in Line 12 in Listing 3. With the
short time required for a single attempt, the attack can just be
repeated until it finally succeeds in these cases.

Like with the string comparison in the TOTP guessing
attack shown in Section VI-A, other libraries also have vul-
nerable base32 decoders. For example, otplib relies on the
base32-decode NPM package [83], which performs the same
linear search as COTP. We also found the widely deployed
gnulib [31] to have its base32 decoder implemented as a
cascade of branches, with a conditional branch for each
possible input byte value.

VII. DIVIDE AND SURRENDER-STYLE ATTACKS WITH
COUNTERSEVEILLANCE

Divide-and-surrender-style attacks [76] exploit variable di-
vision timings to recover secret keys from the Hamming Quasi
Cyclic (HQC) [2]. HQC is a code-based key encapsulation

0 5 10 15 20 25 30

taken

retired

Step
(a) Base32 character is D

0 5 10 15 20 25 30

taken

retired

Step
(b) Base32 character is E

Fig. 6. Event trace for the base32 decoder of the COTP library. Each loop
iteration appears as two branches. The first branch is taken until the input
character matches OTP_DEFAULT_BASE32_CHARS[k]. Consequently, the
number of iterations and, hence, the base32 byte can directly be derived from
the number of times the branch was taken.

mechanism (KEM) that has advanced to round 4 in the NIST
effort for standardization of post-quantum cryptography. On a
Zen 2 machine, Schröder et al. [76] observed timing variations
for the loop shown in Listing 4 from a co-located attacker
running on the sibling hardware thread on the same core as
the victim. In the following, we show that a similar attack is
also feasible on an SEV-SNP virtual machine running on Zen
3. In contrast to the attack by Schröder et al., our attack does
not rely on contention of simultaneous multithreading (SMT)
resources. Instead, our attack single-steps the vulnerable code
sequence and reads the Div Cycles Busy and Div Op Count
performance counters after each single-stepping attempt, yield-
ing the number of cycles the CPU was performing divisions
and the number of divisions performed, respectively.
Threat Model and Attack Setup. The attacker’s goal is to
steal the secret key from the HQC decapsulation algorithm,
running in an SEV-SNP VM on the attacker’s host computer.
The attacker is able to invoke the decapsulation multiple
times, with chosen ciphertexts, e.g., via a web API. The
attacker knows that the victim runs a version of the HQC
reference implementation which is vulnerable to the attack by
Schröder et al. , i.e., the compiler generates div instructions
from the code sequence in Listing 4. The attacker is able to
obtain the guest physical addresses to which the victim binary
is mapped via page tracking [54], enabling the attacker to
detect the start and end of the decapsulation process.
Attack Overview. Divide-and-surrender-style attacks [76]
rely on observing operand-dependent differences in the num-
ber of cycles the processor spends executing divisions. This
timing side-channel is then used to construct a plaintext-
checking oracle: Since the division operands depend on a
seed that is derived from the encrypted message, different
messages can be distinguished by their total division runtime.
Such a distinguisher is sufficient for complete key recovery
from HQC, since the attacker can now change ciphertexts in
a way such that the distinguisher effectively reveals individual

11



1 for(size_t i=0; i<75; ++i)
2 tmp[i] = i + rand_u32[i] % (17669U - i);

Listing 4. The vulnerable code sequence in the HQC reference implementa-
tion. The modulo operation in Line 2 is compiled into div instructions with
operand-dependent timings, enabling key-recovery.

bits of the secret key [76]. In the following, we show that the
required operand-dependent division timings can be observed
using CounterSEVeillance, on a Zen 3 CPU.
Division Timings on Zen 2 and Zen 3. Compared to the Zen
2 microarchitecture exploited by Schröder et al., the operand-
dependent timing variations on Zen 3 are more subtle and
much coarser-grained.

Whereas on Zen 2, a division takes an additional execution
cycle for every 2 bits in the result [7], on Zen 3 only every 9
bits in the result add an extra cycle to the execution time [8].
Consequently, when dividing an unsigned 32 bit value by
17669 − i, with 0 ≤ i ≤ 74, as in Listing 4, on Zen 3, only
two cases can be distinguished, by an increase of only a single
cycle in execution time:

If rand_u32[i] is below 512 · (17669 − i), then the
result is below 512 and only has 9 or less significant bits. If
rand_u32[i] is equal or above 512 · (17669− i), then the
result is equal or above 512 and has 10 or more significant bits,
resulting in an execution time larger by a single cycle. Due to
the limited range of the 32 bit numerator rand_u32[i], the
maximum result is ⌊ 232−1

17669−74⌋ = 244101, with 18 significant
bits, which does not increase the execution time further.

Additionally, the integer divider on Zen 3 can start a second
division before the first one has fully completed [8], possi-
bly concealing the already small timing difference between
different operands. Furthermore, side-channel measurements
typically are prone to measurement noise and temporal blind
spots [75]. Consequently, Schröder et al. could not distinguish
different numerators rand_u32[i] on Zen 3.

In contrast to this, by design, the Div Cycles Busy perfor-
mance counter yields the exact number of cycles the CPU
executed division operations, without measurement noise and
blind spots. Using the Linux perf subsystem on our AMD
EPYC 7313P CPU, we observe that the modulo operation
in Line 2 of Listing 4 results in a Div Cycles Busy value
of 7 for division results below 512 and in a value of 8
for division results equal or above 512, in line with AMD’s
documentation [8]. Consequently, by observing Div Cycles
Busy after each single-step, we can distinguish these two cases.
Leaking Division Times via Performance Counters
and Single Stepping. To leak the division times,
we start single-stepping when the program calls the
vect_set_random_fixed_weight function. We record
both Div Cycles Busy and Div Op Count for 800 single-steps.
When analyzing the resulting trace, we observe a specific
pattern: Div Cycles Busy increments for up to 8 instructions
before the DIV instruction is executed. We assume that this
series of increments is caused by the pipeline already starting
the division, but not committing the results since the execution
is interrupted by a vmexit. Both counters seem to track

hardware usage by the entire pipeline, instead of only counting
usage of retired instructions. We can observe this behavior
across some branching instructions, which confirms that the
divisions are executed and tracked speculatively. Additionally,
the first measurement in such a series of speculatively executed
divisions consistently shows around double the expected num-
ber of busy cycles, which appears to correlate inversely with
the result of the division instruction.

To distinguish between fast and slow divisions, we examine
the Div Cycles Busy counter. When the performance counter
measures 8 busy cycles, the result had ≥ 10bits. Conversely,
we measure 7 busy cycles for smaller results. The position of
the division measurements remains constant on each execution
of the program. This allows us to determine the exact position
of an expected division after an initial profiling phase. Because
the Div Cycles Busy counter increments multiple times before
the division instruction retires, we have multiple chances to
measure the division timing. In our traces, we were able to
measure each division between 4 and 8 times.

Occasionally, we measured higher than expected Div Cycles
Busy values in our trace. Additionally, we saw some single-
steps with more than one Div Op. We assume this is caused
by the constant interrupts that occur during single-stepping,
with potential µops still in flight. However, we only observed
a maximum of one deviating value per measurement series.
Because each division can be measured at least 4 times,
we ignore these unexpected values and use the next single-
step to determine our timing. Additionally, the possibility of
measuring multiple times per division gives us a higher multi-
step resilience.

Using the described techniques on an AMD EPYC 7313P
CPU, we were able to distinguish large and small results for
each division in vect_set_random_fixed_weight in
398 out of 400 (99.5%) test runs. This suffices to build a
plaintext-checking oracle that can distinguish a crafted cipher-
text with a seed that generates fast divisions from random
seeds. Using this plaintext-checking oracle we may employ
prior art [89], [38], [39], [76] to break the security of the
scheme and recover HQC secret keys.

VIII. DISCUSSION AND MITIGATIONS

The working principle of SEV-SNP suggests that entire off-
the-shelf VMs can be run under SEV-SNP, encrypted and
secure against the outside world. The argument that developers
should simply follow constant-time principles [6] may create a
false sense of security: VMs contain software stacks that were
not built for and not meant for constant-time computations –
general-purpose code that is not trivial to make constant time.
Even when attempting to audit an entire software stack for
leakage of secrets, this easily reaches an order of magnitude
of person-decades. It is unclear whether such a large-scale
endeavor is feasible.

AMD states that performance counters may allow for fin-
gerprinting but does not consider this a security concern as
SEV-SNP does not protect against fingerprinting attacks [6].
However, we show that by monitoring performance counters

12



CounterSEVeillance can recover precise execution paths from
confidential VMs: Any secret-dependent branch in the VM
leaks information about the secret. We focused on illustra-
tive and compact examples. However, CounterSEVeillance is
generic and could equally be applied to confidential database
systems, where sensitive data, e.g., medical data, could be
leaked. We showed in Section VI that we can recover infor-
mation byte-by-byte from a string comparison, in a school-
book-like example (cf. [33]). Considering large code bases,
it is likely that many code paths expose similar leakage if not
in the source code then in the compiled binary [79], [73].

Numerous works attacked different variants of AMD
SEV [18], [27], [40], [40], [55], [52], [68], [95], [97], [102].
These works exploit concrete implementation flaws in AMD
SEV and, hence, can be mitigated without loss of functionality.
In contrast to these works, we highlight a generic informa-
tion leakage problem: Adjusting how performance counters
are handled while SEV operation, would remove legitimate
functionality and valuable information the host can use for
debugging, load balancing, and accounting. Consequently, we
see our attacks more in line with other generic attacks, such
as the attack by Wang et al. [92].
Mitigations. CounterSEVeillance exploits that hardware
performance counters provide precise information during the
execution of confidential VMs. Combined with single-stepping
and page-tracking, this enables attacks on cryptographic se-
crets and also general-purpose code. While this is a design
choice for AMD SEV-SNP, Intel followed a different design
for SGX, disabling most hardware performance counters on
a processor core while it is running an SGX enclave in
production mode. Although this does not prevent attackers
from single-stepping the enclave and obtaining some infor-
mation through side channels like page faults [99] or interrupt
latencies [87], the attacker has to resort to less reliable side-
channel information. Thus, a straightforward solution would
be to disable performance counters while an SEV-SNP VM is
running. This would mitigate our attack and also reduce the
reliability of SEV-Step.

However, in a shared cloud environment, cloud providers
may need to acquire statistics from VMs for load-balancing
and billing purposes. Some works also proposed to use perfor-
mance counters as a means to detect or mitigate attacks [19],
[26], [62], [4], or to detect activity that violates the terms
of service. For example, some providers restrict crypto min-
ing [34], [64], [15]. Even in an encrypted machine, such
activities are detectable using performance counters [61], [81].

Even worse, disabling performance counters, as with Intel
SGX, opens the door to hiding malicious workloads, as
multiple works have demonstrated [78], [47], [37], [93], [103].
Arguably, in the use case of confidential VMs, it is more
realistic for a customer to spawn a malicious workload on
a target system than with an SGX enclave.

AMD plans to mitigate leakage from performance counters
with Performance Monitoring Counter Virtualization [12].
While this feature is not available on our Zen 3 and Zen 4
machines, it might be added in a future microcode update from

AMD. Intel TDX already supports similar functionality [3].
With this feature, the processor automatically switches perfor-
mance counter state (along with register state) when entering
and leaving a virtual machine. While switching performance
counter state prevents our attack, it also restricts legitimate
monitoring by the hypervisor.

Concurrent work [60] suggests to insert additional instruc-
tions into the guest’s execution stream to introduce noise into
coarse-grained performance counter measurements. However,
this mitigation would be ineffective against our attack, as
single-stepping yields a measurement for each executed in-
struction, enabling us to filter out the additional instructions.

Single-stepping introduces significant delays to the execu-
tion of a program. In the context of Intel SGX enclaves,
several works studied how an enclave could detect that it
is being attacked [22], [21], [20], [70]. Given the lack of a
trusted timing source, these works use counting threads. Given
a trusted timing source, the enclave can monitor whether it is
interrupted, as any interruption would cause jumps in the timer.
We suggest a similar detection mechanism for confidential
VMs. However, unlike Intel SGX, AMD SEV-SNP supports
a feature called SecureTSC to provide confidential VMs with
a trusted timing source. With SecureTSC enabled, the rdtsc
instruction cannot be manipulated by the hypervisor. Con-
sequently, the confidential VM could, without requiring a
counting thread, use rdtsc to monitor whether there is an
unusual frequency of interruptions, e.g., due to single-stepping
or page-fault tracking. Similarly, future processors could also
directly notify confidential VMs about interruptions [24].

Intel’s TDX technology rate-limits interruptions of confi-
dential VMs to mitigate attacks based on single-stepping [3].
However, a recent work [96] shows that these mitigations are
insufficient to eliminate single-stepping attacks.

A recent, generic approach for improving the security of
confidential VMs is Core Slicing [105], removing the need
for an untrusted hypervisor. Core Slicing partitions the cores,
memory and I/O devices, enabling the VMs to run directly
on the hardware by enforcing isolation between the VMs in
(trusted) hardware. While this would prevent single-stepping
and performance counter reads, this would also prevent the
cloud provider from detecting malicious workloads.

IX. CONCLUSION

In this paper, we introduced CounterSEVeillance, a new
side-channel attack to reconstruct control-flow information
and leaking operand properties from performance counter
data. CounterSEVeillance is the first attack exploiting per-
instruction performance-counter leakage on SEV-SNP virtual
machines. Our systematic analysis showed that 228 perfor-
mance counter events are exposed to a potentially malicious
hypervisor while running confidential virtual machines. We
record performance counter traces with an instruction-level
resolution by single-stepping and match the resulting traces
against binaries to precisely recover the outcome of any secret-
dependent conditional branch. We presented four attack case
studies, leaking a full RSA-4096 private key from Mbed TLS,

13



the first side-channel attack on TOTP verification, the first
side channel on TOTP secret keys exploiting the non-constant-
time base32 decoder implementation of the COTP library, as
well as divide-and-surrender-style leakage on Zen 3. As our
attacks work on fully patched AMD SEV-SNP systems, we
conclude that new mitigations against CounterSEVeillance are
necessary. Furthermore, we conclude that moving an entire
virtual machine into a setting with a privileged adversary can
significantly increase the attack surface, given the vast amounts
of code not vetted for this specific security setting.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable
feedback. This research is supported in part by the Eu-
ropean Research Council (ERC project FSSec 101076409),
by the Austrian Science Fund (FWF SFB project SPyCoDe
10.55776/F85), and by the National Research Center for
Applied Cybersecurity ATHENE as part of the PORTUNUS
project in the research area Crypto. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views
of the funding parties.

REFERENCES

[1] O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting secret keys via
branch prediction,” in CT-RSA, 2007.

[2] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy,
J. Bos, J.-C. Deneuville, A. Dion, P. Gaborit, L. Jérôme, E. Persichetti,
J.-M. Robert, P. Véron, and G. Zémor, “Hamming Quasi-Cyclic
(HQC),” 2024. [Online]. Available: https://pqc-hqc.org/doc/hqc-
specification 2023-04-30.pdf

[3] E. Aktas, C. Cohen, J. Eads, J. Forshaw, and F. Wilhelm, “Intel
Trust Domain Extensions (TDX) Security Review,” 2024. [Online].
Available: https://services.google.com/fh/files/misc/intel tdx -

full report 041423.pdf
[4] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,

“Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks,” Cryptology ePrint
Archive, Report 2017/564, 2017.

[5] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port Contention for Fun and Profit,” in S&P, 2019.

[6] AMD, “AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More,” 2020. [Online]. Available: https://www.amd.co
m/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf

[7] ——, “Software Optimization Guide for AMD EPYC 7002 Proces-
sors,” 3 2020.

[8] ——, “Software Optimization Guide for AMD EPYC 7003 Proces-
sors,” 11 2020.

[9] ——, “AMD Secure Encryption Virtualization (SEV) Information
Disclosure,” 2021. [Online]. Available: https://www.amd.com/en/resou
rces/product-security/bulletin/amd-sb-1013.html

[10] ——, “Processor Programming Reference (PPR) for AMD Family 19h
Model 21h, Revision B0 Processors,” 2021.

[11] ——, “AMD Secure Encrypted Virtualization (SEV),” 2022. [Online].
Available: https://developer.amd.com/sev/

[12] ——, “AMD64 Architecture Programmer’s Manual,” 2024.
[13] ARM, “Arm Confidential Compute Architecture,” 2024. [Online].

Available: https://www.arm.com/architecture/security-features/arm-
confidential-compute-architecture

[14] ——, “TrustZone for Arm Cortex-M Processors,” 2024. [Online].
Available: https://www.arm.com/technologies/trustzone-for-cortex-a

[15] AWS, “AWS Free Tier Terms,” 2018. [Online]. Available: https:
//aws.amazon.com/free/terms

[16] P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and
M. Schwarz, “ÆPIC Leak: Architecturally Leaking Uninitialized Data
from the Microarchitecture,” in USENIX Security, 2022.

[17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in WOOT, 2017.

[18] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One glitch
to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization,” in CCS, 2021.

[19] S. Carnà, S. Ferracci, F. Quaglia, and A. Pellegrini, “Fight Hardware
with Hardware: Systemwide Detection and Mitigation of Side-channel
Attacks Using Performance Counters,” Digital Threats: Research and
Practice (DTRAP), vol. 4, no. 1, pp. 1–24, 2023.

[20] G. Chen, M. Li, F. Zhang, and Y. Zhang, “Defeating Speculative-
Execution Attacks on SGX with HyperRace,” in Dependable and
Secure Computing (DSC), 2019.

[21] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H.
Lai, and D. Lin, “Racing in hyperspace: closing hyper-threading side
channels on SGX with contrived data races,” in S&P, 2018.

[22] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJà Vu,” in Asi-
aCCS, 2017.

[23] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time
detection for cache side channel attack using performance counter
monitor,” Applied Sciences, vol. 10, no. 3, p. 984, 2020.

[24] S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexan-
drovich, T. Kim, F. Piessens, M. Vij, and M. Silberstein, “{AEX-
Notify}: Thwarting precise {Single-Stepping} attacks through interrupt
awareness for intel {SGX} enclaves,” in USENIX Security, 2023.

[25] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“SoK: The challenges, pitfalls, and perils of using hardware perfor-
mance counters for security,” in S&P, 2019.

[26] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detec-
tion with performance counters,” ACM SIGARCH Computer Architec-
ture News, vol. 41, no. 3, pp. 559–570, 2013.

[27] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang, “Secure
encrypted virtualization is unsecure,” arXiv:1712.05090, 2017.

[28] C. Eagle and K. Nance, The Ghidra Book: The Definitive Guide. no
starch press, 2020.

[29] J. Edge, “Disallowing perf event open(),” 2016. [Online]. Available:
https://lwn.net/Articles/696216/

[30] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in ASPLOS, 2018.

[31] Free Software Foundation, “Gnulib – The GNU Portability Library,”
2021. [Online]. Available: https://www.gnu.org/software/gnulib/

[32] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar, A. Kogler, S. Franza,
M. Köstl, and D. Gruss, “SQUIP: Exploiting the Scheduler Queue
Contention Side Channel,” in S&P, 2023.

[33] T. Goodspeed, “A Side-channel Timing Attack of the MSP430 BSL,”
in Black Hat USA, 2008.

[34] Google, “Google Cloud Platform Terms of Service,” 2024. [Online].
Available: https://cloud.google.com/terms

[35] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache Attacks on
Intel SGX,” in EuroSec, 2017.

[36] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security, 2018.

[37] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in S&P, 2018.

[38] Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, and
R. L. Schröder, “Don’t reject this: Key-recovery timing attacks due
to rejection-sampling in hqc and bike,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 223–263, 2022.

[39] Q. Guo, D. Nabokov, A. Nilsson, and T. Johansson, “Sca-ldpc: A
code-based framework for key-recovery side-channel attacks on post-
quantum encryption schemes,” in International Conference on the The-
ory and Application of Cryptology and Information Security. Springer,
2023.

[40] F. Hetzelt and R. Buhren, “Security analysis of encrypted virtual
machines,” ACM SIGPLAN Notices, vol. 52, no. 7, pp. 129–142, 2017.

[41] M. J. Hinek, Cryptanalysis of RSA and Its Variants. Chapman and
Hall/CRC, 2009.

[42] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in S&P, 2013.

14



[43] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level Directional Predictor Based Side-Channel
Attack against SGX,” in CHES, 2020.

[44] Intel, “Intel Software Guard Extensions (Intel SGX) Debug and Build
Configurations,” 2020.

[45] ——, “Intel Trust Domain Extensions,” 2021. [Online]. Available:
https://software.intel.com/content/dam/develop/external/us/en/docume
nts/tdx-whitepaper-v4.pdf

[46] ——, “Intel Software Guard Extensions (Intel SGX),” 2024. [Online].
Available: https://www.intel.com/content/www/us/en/products/docs/ac
celerator-engines/software-guard-extensions.html

[47] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the
Processor via Rowhammer Attack,” in SysTEX, 2017.

[48] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,”
2016.

[49] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
Fine-grained Control Flow Inside SGX Enclaves with Branch Shadow-
ing,” in USENIX Security, 2017.

[50] C. Li and J.-L. Gaudiot, “Online detection of spectre attacks using
microarchitectural traces from performance counters,” in Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), 2018.

[51] ——, “Detecting Malicious Attacks Exploiting Hardware Vulnerabili-
ties Using Performance Counters,” in COMPSAC, 2019.

[52] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A systematic look at ciphertext side channels on AMD
SEV-SNP,” in S&P, 2022.

[53] M. Li, Y. Zhang, and Z. Lin, “Crossline: Breaking “security-by-crash”
based Memory Isolation in AMD SEV,” in CCS, 2021.

[54] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected {I/O}
operations in {AMD’s} secure encrypted virtualization,” in USENIX
Security, 2019.

[55] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the Ciphertext
Side Channel,” in USENIX Security, 2021.

[56] ——, “TLB Poisoning Attacks on AMD Secure Encrypted Virtualiza-
tion,” in ACSAC, 2021.

[57] Linaro, “MBed TLS,” 2024. [Online]. Available: https://www.trustedf
irmware.org/projects/mbed-tls/

[58] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “PLATYPUS: Software-based Power Side-Channel At-
tacks on x86,” in S&P, 2021.

[59] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[60] X. Lou, K. Chen, G. Xu, H. Qiu, G. Shangwei, and T. Zhang,
“Protecting Confidential Virtual Machines from Hardware Performance
Counter Side Channels,” in DSN, 2024.

[61] G. Mani, V. Pasumarti, B. Bhargava, F. T. Vora, J. MacDonald, J. King,
and J. Kobes, “Decrypto pro: Deep learning based cryptomining mal-
ware detection using performance counters,” in Autonomic Computing
and Self-Organizing Systems (ACSOS), 2020.

[62] R. Martin, J. Demme, and S. Sethumadhavan, “TimeWarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” ACM SIGARCH Computer Architecture News, 2012.

[63] U. F. Mayer, “Linux/Unix nbench,” 2017. [Online]. Available:
https://www.math.utah.edu/∼mayer/linux/bmark.html

[64] Microsoft, “Azure free account,” 2024. [Online]. Available: https:
//azure.microsoft.com/en-us/pricing/offers/ms-azr-0044p/

[65] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam: A False Depen-
dency Attack against Constant-Time Crypto Implementations in SGX,”
in CT-RSA, 2018.

[66] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
amplifies the power of cache attacks,” in CHES, 2017.

[67] D. Moghimi, “Downfall: Exploiting Speculative Data Gathering,” in
USENIX Security, 2023.

[68] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed: Subvert-
ing AMD’s virtual machine encryption,” in EuroSec, 2018.

[69] M. Morbitzer, S. Proskurin, M. Radev, and M. Dorfhuber, “SEVerity:
Code Injection Attacks against Encrypted Virtual Machines,” in WOOT,
2021.

[70] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX Enclaves from Practical Side-Channel At-
tacks,” in USENIX ATC, 2018.

[71] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA, 2006.

[72] Perf Wiki, “Main Page,” 2020. [Online]. Available: https://perf.wiki.
kernel.org/index.php/Main Page

[73] PQShield Ltd, “PQShield plugs timing leaks in Kyber / ML-KEM
to improve PQC implementation maturity,” 2024. [Online]. Available:
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-
to-improve-pqc-implementation-maturity/

[74] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal Attack:
Leaking Control-Flow in SGX via the CPU Frontend,” in USENIX
Security, 2021.

[75] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Overcoming
the Observer Effect for High-Precision Cache Contention Attacks,” in
CCS, 2021.

[76] R. L. Schröder, S. Gast, and Q. Guo, “Divide and Surrender: Exploiting
Variable Division Instruction Timing in HQC Key Recovery Attacks,”
in USENIX Security, 2024.

[77] M. Schwarz and D. Gruss, “How Trusted Execution Environments Fuel
Research on Microarchitectural Attacks,” IEEE Security & Privacy,
2020.

[78] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in DIMVA, 2017.

[79] M. Schwarzl, E. Kraft, and D. Gruss, “Layered Binary Templating,” in
ACNS, 2023.

[80] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “MicroScope: Enabling Microarchitectural Replay Attacks,”
in ISCA, 2019.

[81] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Cae-
sar, and N. Borisov, “Mining on someone else’s dime: Mitigating covert
mining operations in clouds and enterprises,” in RAID, 2017.

[82] C. Tilkins, “GitHub – tilkinsc/COTP: A simple One Time Password
(OTP) library in C, supports C++,” 2023. [Online]. Available:
https://github.com/tilkinsc/COTP

[83] L. Unnebäck, “Base32 Decode,” 2017. [Online]. Available: https:
//github.com/LinusU/base32-decode

[84] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” in USENIX Security, 2018.

[85] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load Value
Injection,” in S&P, 2020.

[86] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practical At-
tack Framework for Precise Enclave Execution Control,” in Workshop
on System Software for Trusted Execution, 2017.

[87] ——, “Nemesis: Studying Microarchitectural Timing Leaks in Rudi-
mentary CPU Interrupt Logic,” in CCS, 2018.

[88] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data
Load,” in S&P, 2019.

[89] G. Wafo-Tapa, S. Bettaieb, L. Bidoux, P. Gaborit, and E. Marcatel,
“A practicable timing attack against hqc and its countermeasure,”
Cryptology ePrint Archive, 2019.

[90] F. Wang and Y. Shoshitaishvili, “Angr - The Next Generation of Binary
Analysis,” in Cybersecurity Development (SecDev), 2017.

[91] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX,” in CCS, 2017.

[92] W. Wang, M. Li, Y. Zhang, and Z. Lin, “PwrLeak: Exploiting Power
Reporting Interface for Side-Channel Attacks on AMD SEV,” in
DIMVA, 2023.

[93] S. Weiser, L. Mayr, M. Schwarz, and D. Gruss, “SGXJail: Defeating
Enclave Malware via Confinement,” in RAID, 2019.

[94] S. Weiser, R. Spreitzer, and L. Bodner, “Single Trace Attack Against
RSA Key Generation in Intel SGX SSL,” in AsiaCCS, 2018.

[95] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Mon-
rose, “The severest of them all: Inference attacks against secure virtual
enclaves,” in AsiaCCS, 2019.

[96] L. Wilke, F. Sieck, and T. Eisenbarth, “TDXdown: Single-Stepping and
Instruction Counting Attacks against Intel TDX,” in CCS, 2024.

15



[97] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “SEVu-
rity: No Security Without Integrity–Breaking Integrity-Free Memory
Encryption with Minimal Assumptions,” in S&P, 2020.

[98] L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth, “Sev-step: A
single-stepping framework for amd-sev,” TCHES, pp. 180–206, 2024.

[99] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems,” in S&P,
2015.

[100] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security, 2014.

[101] G. Yeo, “otplib: Time-based (TOTP) and HMAC-based (HOTP)
One-Time Password library,” 2021. [Online]. Available: https:
//github.com/yeojz/otplib

[102] R. Zhang, C. H. Center, L. Gerlach, D. Weber, L. Hetterich, Y. Lü,
A. Kogler, and M. Schwarz, “CacheWarp: Software-based Fault Injec-
tion using Selective State Reset,” in USENIX Security, 2024.

[103] Z. Zhang, X. Zhang, Q. Li, K. Sun, Y. Zhang, S. Liu, Y. Liu, and
X. Li, “See through Walls: Detecting Malware in SGX Enclaves with
SGX-Bouncer,” in AsiaCCS, 2021.

[104] H. Zhou, X. Wu, W. Shi, J. Yuan, and B. Liang, “HDROP: Detecting
ROP Attacks Using Performance Monitoring Counters,” in ISPEC,
2014.

[105] Z. Zhou, Y. Shan, W. Cui, X. Ge, M. Peinado, and A. Baumann, “Core
slicing: closing the gap between leaky confidential VMs and bare-metal
cloud,” in USENIX OSDI, 2023.

16


