
SketchFeature: High-Quality Per-Flow Feature
Extractor Towards Security-Aware Data Plane

Sian Kim†, Seyed Mohammad Mehdi Mirnajafizadeh∗, Bara Kim‡, Rhongho Jang∗ and DaeHun Nyang†
†Ewha Womans University, ∗Wayne State University, ‡Korea University

Abstract—Intelligent Network Data Plane (INDP) is emerging
as a promising direction for in-network security due to the ad-
vancement of machine learning technologies and the importance
of fast mitigation of attacks. However, the feature extraction
function still poses various challenges due to multiple hardware
constraints in the data plane, especially for the advanced per-
flow 3rd-order features (e.g., inter-packet delay and packet size
distributions) preferred by recent security applications. In this
paper, we discover novel attack surfaces of state-of-the-art data
plane feature extractors that had to accommodate the hardware
constraints, allowing adversaries to evade the entire attack detec-
tion loop of in-network intrusion detection systems. To eliminate
the attack surfaces fundamentally, we pursue an evolution of
a probabilistic (sketch) approach to enable flawless 3rd-order
feature extraction, highlighting High-resolution, All-flow, and
Full-range (HAF) 3rd-order feature measurement capacity. To
our best knowledge, the proposed scheme, namely SketchFea-
ture, is the first sketch-based 3rd-order feature extractor fully
deployable in the data plane. Through extensive analyses, we
confirmed the robust performance of SketchFeature theoretically
and experimentally. Furthermore, we ran various security use
cases, namely covert channel, botnet, and DDoS detections, with
SketchFeature as a feature extractor, and achieved near-optimal
attack detection performance.

I. INTRODUCTION

Artificial Intelligent (AI)-enhanced in-network defense [6],
[50], [63], [49], [62] is emerging as a prominent trend for net-
work security, supported by intensive research on General Net-
work Intelligence (GNI) [36], [53], [4], [55], [13], [32], [64],
[66], [37] and Intelligent Network Data Plane (INDP) [54],
[63], [11], [30], [62], [52], [49]. Given the high-speed and
large-scale nature of networks, thorough processing of raw
data (i.e., packets) is believed to be unfeasible. Consequently,
feature extraction in the data plane still remains challenging
yet vital for AI-boosted in-network defense, by highlighting the
essential needs for real-time processing capacities, constrained
by hardware limitations such as pipelined architectures and
limited computational resources.

To date, various features have been investigated to activate
INDP for intrusion detection. Initially, 1st-order per-packet
feature that is flow-agnostic and stateless, e.g., protocol, time
to live, packet size, etc. [49], [62]. Research then expanded
to include 2nd-order per-flow features that are flow-aware and
stateful, e.g., flow size, mean, variance, minimum, maximum,

etc. NetBeacon [63] demonstrated that 1st-order per-packet
features encounter considerable limitations and must be com-
bined with 2nd-order features to enhance accuracy in intru-
sion detection significantly. Furthermore, recent efforts have
highlighted the effectiveness of 3rd-order features, specifically
per-flow distribution information, in detecting application layer
attacks, such as storage/timing covert channel, botnets, and
website fingerprint [6], [50]. As such, In-Network Intrusion
Detection Systems (IN-IDS) heavily rely on either 2nd-order or
3rd-order features, with the key difference stemming from the
deployment locations of attack detection models. In alignment
with recent INDP advancements, NetBeacon [63] focused on
enabling a 2nd-order feature-based decision tree with the
switch’s data plane. On the other hand, 3rd-order feature-
based systems, namely FlowLens [6] and NetWarden [50],
deploy their detection logic in the switch’s control plane (i.e.,
operation system). However, it is crucial to emphasize that
irrespective of the location of attack detection logic, the feature
extraction must occur within the switch data plane to enable
line-rate investigation of all flows and traffic.

Although higher-order features provide superior attack
detection capacities, in this paper, we reveal that precisely
measuring flow characteristics for advanced 3rd-order features
is complex and a simplistic approach can inadvertently provide
new opportunities for adversaries. Specifically, measuring per-
flow 3rd-order vector features significantly increases both time
and space complexity compared to 2nd-order per-flow features.
Given the hardware constraints of the switch data plane,
current IN-IDS had to employ various workarounds for feature
extraction to manage the full control loop, including per-flow
feature extraction, attack flow detection, and access control
list (ACL) deployment. However, our analysis indicates that
feature extraction functions have become the weakest point
of the detection systems due to their workaround designs,
enabling adversaries to evade the entire attack detection loop.

For instance, FlowLens [6] and NetWarden [50] both
targeted covert channel issues with per-flow distribution in-
formation. To simplify data plane operations, both systems
employ a mean of quantizing a continuous distribution fea-
ture into a fewer number of discrete bins. The differences
lie in FlowLens [6] conducts finer-grained quantization but
limits its measurement to only the top-K bins, chosen from
prior knowledge using priori-known attack data. Conversely,
NetWarden [50] captures the entire distribution range but
employs very coarse quantization, resulting in a very low-
resolution perception of the flow features. These strategies
result in a phenomenon where only selected flows are escalated
to the switch’s control plane for further detection, inherently
precluding a comprehensive all-flow analysis in such flow
escalation systems. We prefer to call their data plane mea-

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241071
www.ndss-symposium.org

surement functions as Symptom Detector rather than feature
extractor, since 3rd-order features are partially measured and
used for attack flow identifications in such flow escalation
systems. We highlight that both symptom detector designs
assumed a static attacker, which allows an advanced adversary
to evade the attack detection either by shifting the distribution
patterns of attack flows or by overwhelming the system with
crafted dummy flows (see section II-B for details). Besides,
a similar flow selective processing behavior is observed in
NetBeacon [63] that fully integrates ML models in the data
plane. In particular, its feature extractor is active for predicted
large flows only, which implies that only a subset of flows and
packets will proceed to the detection model with moderate
accuracy of flow size predictions from prior knowledge.

In this paper, we emphasize the critical need for High-
resolution, All-flow, and Full-range (HAF) 3rd-order feature
extraction and introduce SketchFeature designed to fully sup-
port HAF within the programmable data plane. SketchFeature
improves traffic visibility, thereby robustifying the control loop
of IN-IDS by addressing vulnerabilities in feature extraction
processes. Moreover, SketchFeature not only delivers excep-
tional 3rd-order feature accuracy but also facilitates 2nd-order
feature quality through a post-hoc aggregation, thereby, has
the potential to advance diverse INDP-based security appli-
cations [6], [50], [10]. SketchFeature1 has been successfully
deployed in a commercial switch with Tofino fabric [2]. Our
contributions are as follows:

(1) Extending Sketch Capacity for 3rd-order Features. We
tackle the 3rd-order feature measurement challenge using a
sketch data structure with memory random sharing, tradition-
ally limited to per-flow 2nd-order features. To extend this ca-
pability, we introduce a novel concept of sketch virtualization
that allows the traditional sketch data structure to preserve all-
flow measurement capacity in more complex tasks.

(2) Addressing Technical Challenge for Sketch Evolution.
We identify the technical challenges in advancing traditional
sketch capacity for higher-order feature measurement, which is
completely neglected by state-of-the-art schemes when pursu-
ing a similar goal. We call it phantom decoding, which refers
to negative queries of non-existent features when a flow is
encoded from multiple feature dimensions 3rd-order feature. In
this paper, we make an initial effort to model the issue formally
and theoretically and propose a feasible use of membership
testing, enhancing noise reduction with provable error bounds
with probabilistic guarantees.

(3) Theoretical and Experimental Validation. We show
that the proposed SketchFeature is feasible for HAF 3rd-
order feature measurement with exceptional memory efficiency
and effective suppression of phantom decoding noise, without
compromising inherent sketch accuracy. We provide detailed
experimental results evaluating SketchFeature’s ability to ex-
tract 3rd-order features such as inter-packet delay (IPD) and
packet size (PS) distributions, along with 2nd-order features,
such as minimum, maximum, mean, standard deviation, and
entropy per flow, to show the feasibility of SketchFeature.

(4) Advancing Security Applications. We evaluate our sys-
tem’s security effectiveness through various use cases, namely

1The source code is at https://github.com/ISRL-EWHA/SketchFeature

covert channel, botnet, and DDoS attack detection varying
datasets [31], [42], [8], [43]. The results demonstrate the high-
quality and robust feature extraction capability of SketchFea-
ture and near-optimal attack detection performance, where the
optimal is based on exact feature measurement.

Organization. The rest of the paper is organized as follows. In
section II, we motivate our works by proposing two practical
attacks on the existing feature extractors. In section III, we
explain the SketchFeature’s idea and primitive design, followed
by a theoretical analysis in section IV. In section V, we
investigate the feature extraction quality of SketchFeature
over various settings and security applications, with extended
discussions in section VI. Finally, we discuss related works
and conclude the paper, in sections VII and VIII, respectively.

II. BACKGROUND AND MOTIVATION

A. Background

3rd-order Features for Security. Due to the ability of finer-
grained measurement involving multi-dimensional information
per flow, 3rd-order features have shown to be crucial in
advanced security applications [50], [6], [19], [20], [63], such
as per-flow inter-packet delay (IPD) distribution and packet
size (PS) distribution. Furthermore, the richer and finer infor-
mation contained in 3rd-order features can be aggregated to
derive lower-order features, such as min, max, mean, standard
deviation, and magnitude, which are also preferred in various
attack detection scenarios [38], [63].

Data Plane Constraints. Early detection of attacks within
the network data plane is crucial for mitigating link flood-
ing [65], [51] as it allows immediate actions to minimize
attack impacts. Various efforts have focused on enhancing
data-plane detection capabilities [6], [50], [63], [49], [62],
[34], [59], [57], [14], [29], [17], [28]. However, with line-
rate packet processing as the top mission, the first constraint
of ASIC-based programmable switches is limited support for
arithmetic logic. While addition, subtraction, and bit operations
are available, relatively complex operations are absent, such as
multiplication, division, and floating point operations. Second,
due to physical constraints, ASIC maintains only 12 stages
(hardware partitions) on its pipeline, each embeds scarce
stateful SRAM and TCAM memory and arithmetic logic unit
(ALU) resources. Notably, a table (array) data structure defined
in the stateful memory can be accessed only once per packet
and for one-entry read-write operation. With logical and phys-
ical constraints, ASIC shows a natural limit of recording rich
flow information for advanced and robust attack detections.

B. Motivation

System Model (Data Plane Workarounds). To accommo-
date the data plane needs, several workaround solutions have
been proposed, namely selective flow feature extraction with
symptom detection. As illustrated in Fig. 1, the existing In-
network IDS (IN-IDS) falls into two categories: in-network
detection and intelligent data plane. 1 In-network Detection.
FlowLens [6] and NetWarden [50] fall into the first category
to perform per-flow detection in the programmable switch’s
control plane. However, unlike the data plane, a programmable
switch’s control plane is not capable of processing fine-grained
features for all flows because of the hardware nature of using

2

Fig. 1: System and threat models: through targeting the
symptom detector, the attacker can bypass the flow selection
process, thereby evading the attack detection mechanism in
both the data and control plane.

a general CPU with DRAM. Therefore, a per-flow “feature
extractor” in the data plane escalates only suspicious flows
to the control plane for detection with either a predefined
threshold [50] or learning-based model [6]. 2 Intelligent Data
Plane. NetBeacon [63] is in line with a recent trend to deploy
a machine learning model in the data plane [54]. A per-
flow feature extractor is placed in front of the model, to pre-
process a 2nd-order (stateful) feature for learning-based attack
detection. Nevertheless, due to the huge amount of stateful
memory required for all-flow measurement, NetBeacon utilizes
a stateless (per-packet) 1st-order feature for a first-aid action,
namely the prediction of large flow packets. By doing so,
NetBeacon’s feature extractor and detection model serve large
flows only leveraging a flow size prediction model.

Threat Model. Our threat model sheds light on the detective
feature extractors that supply flows selectively to the detection
phase of the control loop, as shown in Fig. 1. We assume
an adversary that targets the naive flow selection logic with
strong prior knowledge (e.g., historical traffic patterns [58],
[50] and flow size [63]). We call it “symptom detector” since
the flow selection is performed based on either low-resolution
or selective symptoms of a flow. The attacker’s goal is to evade
the entire control loop by attacking the vulnerable link.

Attack Surface 1. Selective Symptom Detection.
FlowLens [6]’s data plane is a hash table that originally
aimed at per-flow packet size distribution (3rd-order).
However, covering the full spectrum of the packet size
distribution (e.g., 1500 bins per table entry for packet size
range 0∼1500 Bytes) is not feasible at the data plane. To
workaround, FlowLens takes a two-step design to relax the
complexity. Its “feature extractor” first quantizes the packet
size range in a relatively fine-grained resolution. Despite this
effort, covering the full spectrum of the quantized feature is a
big burden for memory. For example, a quantization interval
16 still requires each hash table entry to record 94 bins with
32-bit counters per bin, equivalent to 376 Bytes per flow.
Our analysis with a 5-second CAIDA trace indicates that
6 MB memory space allows only 6 bins quantization (low
resolution) for per-low packet size distribution measurement,
and with a finer-grained 94-bin setting, FlowLens can handle
12.6% of flows only. Therefore, FlowLens’s second design
is to selectively measure flows that fall into historical top-K
bins and detect attacks with the top-K symptoms only.

Data-plane Evasion Attack. Fig. 2 (a) shows the attacker’s
logic. The black bars depict the packet size distribution (PSD)
of the known covert storage channel (CSC) traffic Facet [31].

(a) Dataset Distribution (b) Observed CSC Attacks

(c) Dataset Distribution (d) Control Plane Flooding Attack

Fig. 2: Attack evasion demonstration for two state-of-the-art
3rd-order feature collections: as shown, both selective and low-
resolution symptom detectors are vulnerable to attack evasion
in the data plane and flooding of the control plane.

With top-10 bins, FlowLens claimed to identify covert chan-
nels accurately. However, it has been studied that network
traffic patterns vary even for the same flow [29]. Also, the
packet size is under an attacker’s control. In our experiment,
we simply added a small amount of data to each packet of
the original attack trace, which is equivalent to only 7.4%
bandwidth overhead; however, it triggered significant enough
distribution shifts, as shown in Fig. 2 (a) (red bars). As a
result, the selective symptom detector could not observe any
adversarial flows with the pattern shifting, resulting in the
evasion of the entire control loop even before detection, as
shown in Fig. 2 (b). It is worth mentioning that the state-
of-the-art data plane detection system relies on the essential
packet header fields (i.e., top-K 1st-order features) to predict
the eventual flow size and perform detection for large flows
only [63]. Therefore, the primitive adversarial behaviors that
tamper per-packet information (e.g., packet size) remain effec-
tive for misleading prior knowledge-based decision-making.

Intuition. One may consider that attacking with a specific
packet length can be a strong indicator of pattern shifts.
However, it is still invisible to FlowLens due to selective
feature measurement based on prior knowledge of Top-K.
Therefore, it is desired that a feature extractor can measure
a full spectrum (full-range) of fine-grained (high-resolution)
distribution features for entire traffic (all-flows), to eliminate
blind spots for IN-IDS.

Attack Surface 2. Low-resolution Symptom Detection.
NetWarden [50] leverages per-flow inter-packet delay (IPD)
distribution to mitigate covert timing channel (CTC) [50], [21],
[35], [12], [42], where attackers aim to hide secret information
varying IPDs. Different from FlowLens [6] that monitors se-
lective symptoms, NetWarden’s control plane detector is aimed
at full-range IPD distribution. However, since it is unrealistic
to send all packets to the programmable control plane, a coarse
IPD distribution (very large quantization interval) is measured
at the data plane to escalate only suspicious flows to the control
plane with a pre-defined threshold (i.e., symptom detector).

3

Control-plane Flooding Attack. For CTC detection, main-
taining a low false positive rate (benign as an attack) is as
critical as low false negative rate (attack as a benign) due to
a high level of unobservability [7]. We stress that instead of
attacking the detection algorithm that resides in the control
plane, an adversary can fool the coarse symptom detector by
injecting a large number of dummy flows. Consequentially,
the coarse measurement with a static threshold will trigger
the redirection of massive dummy flow packets toward the
control plane leading to resource exhaustion. As shown in
Fig. 2 (c), we craft dummy attack flows, which are slow (i.e.,
> 1-second IPD) at the beginning and hooking stage, then
burst after 200 packets were sent (i.e., symptom threshold). As
shown in Fig. 2 (d), the dummy flooding traffic can increase the
packet communicating to the control plane one thousand times.
Since the amount of flows is an attacker’s option, NetWarden’s
control plane can be flooded easily.

Intuitions. NetWarden [50] may use a rate limiter or
detector to counter a control plane flooding attack. However, a
rate limiter at the control plane cannot prevent flooding of the
data-control-plane channel. Moreover, a rate limiter applied in
the data plane requires the support of scarce matching-action
resources and an additional mechanism for flooding detection,
making attack surface mitigation complex. Therefore, it is
desired that a feature extractor can process features in the data
plane only, without redirecting packets to the control plane, to
mitigate the control-plane threats fundamentally.

C. Design Goals

Through the security analyses, we can observe that the
various workarounds in the data plane made adversarial attacks
easier for evading the entire control loop of IN-IDS. Particu-
larly, the selective and low-resolution symptom detectors based
on prior knowledge are defective when adversaries slightly
tamper the traffic patterns. These insights motivate us to design
a better feature extraction function, namely SketchFeature,
for a robust 3rd-order feature measurement. The design goals
of the proposed scheme lie in 1) leveraging a probabilistic
(sketch) approach to enable 3rd-order feature measurement,
2) identifying fundamental challenges for the sketch evolution
pursuing higher-dimensional and higher-order feature encod-
ing, 3) exploring viable solutions to tackle the challenges with
theoretical supports, and 4) realizing high-resolution, all-flow,
full-range (HAF) feature extraction without workarounds to
eliminate attack surfaces fundamentally.

III. SKETCHFEATURE DESIGN

We begin with a formal definition of the problem. Then,
we describe the encoding and decoding algorithms of Sketch-
Feature, followed by design logistics.

A. Formal Problem Definition

Let each flow fi within a dataset F = {f1, f2, . . . , fp},
where p denotes the number of distinct flows. With q repre-
senting the number of quantization levels, afij indicates the
number of packets of flow fi in the j-th quantized bin (QLj).
Then, each flow fi is characterized by an distribution vector
afi = (afi1 , afi2 , . . . , afiq), as shown in Fig 3. A functional

Fig. 3: Complexity reduction of per-flow distribution (3rd-
order) feature through quantization.

sketch, SketchFeature, denoted as SF , is used to provide
estimated values for specific queries Q(SF , afij), where

ˆafij ← Q(SF , afij),
which estimates the packet count in QLj of flow fi. This pro-
duces the estimated distribution vector âfi = (ˆafi1 , ˆafi2 , . . . ,
ˆafiq) for flow fi when aggregated across all quantized bins.

In the case of phantom decoding, when querying a flow that
has never been encoded in QLj , SketchFeature has a high
probability of providing the following response,

0← Q(SF , afij).

B. Building Blocks of SketchFeature

Quantizing 3rd-order Feature. Quantization is a powerful
tool for per-flow distribution (3rd-order) feature measure-
ment [50], [6]; converting continuous feature values into dis-
crete values for complexity reduction. Arithmetic quantization,
which divides a continuous range of values uniformly into
multiple intervals (or bins), is frequently used when dealing
with features like inter-packet delay (IPD) and packet size
(PS) distributions. As shown in Fig. 3, with a quantization
level (QL, hereafter) of 300, the packet size within the range
[0,300] can be grouped into the first bin, values of [301, 600]
become the second bin, and so on. The interval setting (i.e.,
the number of bins) is the main trigger of a trade-off between
granularity (resolution) and complexity (distinct discrete val-
ues). As state-of-the-art works [50], [6], SketchFeature also
leverages quantization for complexity reduction, but pursue
higher resolution of full range distribution features for all-
flow (i.e., HAF feature measurement) to accelerate in-network
intrusion detection.

Data Structure and Workflow. Fig. 4 illustrates the data
structure and the simplified workflow of SketchFeature. It
includes three primitive components including a quantization
function (QNT), virtual sketch, and membership test function
(Bloom Filter). SketchFeature’s sketch data structure has d
independent array (d = 3 in the illustrated example), each
consisting of w 32-bit counters. For encoding, each feature
(packet) value of a flow is firstly quantized into the correspond-
ing bin, and then encoded into both sketch and membership
test functions, where the former tracks the frequency of the
identical feature and the latter records the appearance of the
feature. For decoding, all flows’ distribution vectors can be
retrieved from the sketch, by querying the appearance of all
bins from the membership test function. The unique design
of SketchFeature is the virtual sketch that allows feature-
aware encoding, which is the key to enabling complex feature
extraction even in the highly resource-constrained data plane
of programmable switches.

4

Fig. 4: SketchFeature: data structure and workflow.

Algorithm 1: Encoding and Decoding
Input: flowID f , feature value v, Bloom filer B, Sketch S, number

of layers of Bloom filter db and sketch ds, width of layers
in Bloom filter wb and sketch ws

1 Function Encoding(f, v):
2 l← get quantization level(v)
3 for i← 1 to db do
4 idx← hashi(f , l) % wb

5 Bi[idx]← 1
6 end
7 for i← 1 to ds do

// Sketch virtualization.

8 idx← hash′i(f , l) % ws

9 Si[idx]← Si[idx] + 1
10 end
11 end
12 Function Decoding(f, l):
13 for i← 1 to db do

// Tackling phantom decoding issue.

14 idx← hashi(f , l) % wb

15 if Bi[idx] is 0 then
16 return 0
17 end
18 end
19 a← INT MAX
20 for i← 1 to ds do
21 idx← hash′i(f , l) % ws

22 a← min(a, Si[idx])
23 end
24 return a
25 end

Encoding and Decoding. Algorithm 1 describes the encoding
and decoding operation of SketchFeature. For simplicity, the
distinct hash functions for each quantization level sketch are
implemented by using the quantization level (l) as an input to
the hash function. During encoding, when a flow with flow ID
f arrives, the feature value v (e.g., packet size, IPD, etc.) is
quantized to determine the corresponding quantization level.
Then, it sets the bit in the Bloom filter to 1, indicating that
flow f has been encoded at l-th quantized bin sketch. Lastly,
the counters in all layers of the sketch are incremented to
update that the value falls into the l-th quantized bin sketch
has arrived for flow f . As shown, sketch virtualization is
realized through distinct hash functions, using a single sketch
without partitioning it. Decoding is the process of estimating
the packet count of flow f that belongs to the quantization level
l. Similar to encoding, the Bloom filter is checked using the
hash function with l as an input. If any bit across all layers
is 0, the value in the sketch is phantom, so 0 is returned.
Otherwise, since SketchFeature is based on the Count-Min
sketch, it returns the minimal counter value across all layers.

Fig. 5: Sketch partition (baseline) vs. sketch virtualization.

C. Design Logistics of SketchFeature

In the following, we first provide a step-by-step explanation
of the virtual sketch function of SketchFeature. Then, we
unveil a key technical challenge during the evolution of the
Count-Min sketch from 2nd-order (scalar) to 3rd-order (vector)
feature extractions. Lastly, we discuss our solution, namely
the membership test, that can be fully deployed in the data
plane. The ultimate goal of SketchFeatureis High-resolution,
All-flow, and Full-range (HAF) 3rd-order feature extraction.

Sketch Partitioning (Baseline). For a better understanding,
we start with a strawman (baseline) approach that utilizes a
conventional sketch for distribution feature encoding. We note
that the baseline sketch is not introduced by this work but
is inspired by and extended and generalized from NetWar-
den’s [50] data plane approach, where the original version
detects suspicious candidates with a coarse binary partition
of a distribution feature (i.e., 2 bins only) for simple outlier
detection. The baseline was the only sketch that measures
3rd-order (distribution) vector features in the data plane, and
possibly for fine-grained HAF feature extraction.

As illustrated in Fig. 5, the baseline approach quantizes
packet size range (i.e., 0∼1500 bytes) into 5 bins (i.e.,
QL1 ∼ QL5), and then uses five memory-independent Count-
Min sketches [15] to perform per-flow counting at each sketch
distinguishing bins (QLs). The baseline approach is generally
valid but suffers from a memory inefficiency issue stemming
from the hard partition of sketches. As shown in Fig. 6, the
imbalance of network traffic leads to a biased load to the
sketches and causes significant memory inefficiency. When the
distribution vector is skewed, all flows will be encoded into the
sketches designated for bins QL1 and QL2, whereas sketches
assigned for bins QL3, QL4, and QL5 remain unused and
wasted. Additionally, as more flows are encoded in bins QL1

and QL2, they experience greater overestimation due to hash
collisions (i.e., sketch error). We note that with a fine-grained
quantization, more data will be encoded into smaller sketches,
saturating the sketch memory (i.e., error-bound guarantee) and
leading to higher noise of feature values in the crowd range.
Eventually, a “single-point failure” will change the whole
shape of the distribution feature when decoding.

Sketch Virtualization (Our Approach). To improve memory
efficiency, we introduce a strategy called sketch virtualization.
This technique allows distinct sketches (for different bins) to
virtually share a single memory space without partitioning it.
To realize sketch virtualization, SketchFeature employs differ-
ent hash functions for each bin (QLi), enabling the feature
value to be encoded into the virtual sketch corresponding
to its range. As shown in Fig. 5, SketchFeature uses the

5

(a) Packet size distribution of CAIDA Trace (2.59 million packets) [1]

(b) Baseline sketch (c) Sketch virtualization

Fig. 6: Memory efficiency comparison: sketch partitioning
(baseline) vs. sketch virtualization (SketchFeature). 6 MB
memory space was given to each scheme for per-flow packet
size distribution measurement using a 5-second CAIDA trace.

entire memory space for all bins. This is possible because
of a characteristic of a hash function, which is designed to
distribute its output as uniformly as possible, thereby enhanc-
ing memory utilization and reducing sketch errors caused by
hash collisions. Notably, in resource-constrained environments
such as ASIC-based hardware, creating numerous partitioned
sketches is infeasible, thus the baseline sketch cannot be
deployed in the data plane in an HAF manner. However, virtual
sketches differentiated by hash functions can be implemented
without additional overhead. To confirm, Fig. 6 (b) and (c)
show the average number of flows encoded in each register
(counter) when the feature is quantized into 50 bins (i.e., the
number of QLs). Unlike SketchFeature, the baseline sketch
uses partitioned individual sketches; thereby each memory
address corresponds to a unique bin. Referring to the dataset
in Fig. 6 (a), the baseline sketch shows collisions concentrated
in specific quantized bin sketches according to the dataset’s
distribution. This issue becomes more pronounced over time,
and bins that rarely encode flows result in significant memory
waste. Conversely, SketchFeature virtually divides a single
sketch and utilizes the whole memory space, promoting an
even distribution of the dataset across the entire memory space.

Understanding Phantom Decoding Issue. Although multiple
efforts were made to extend the sketch’s capacity from 2nd-
order to 3rd-order feature measurement, the most critical
technical challenge for sketch theory is not fully discussed
and often neglected by existing works [25], [50]. In this work,
we make initial efforts to systematically study the sketch chal-
lenge for the 3rd-order feature measurement, namely Phantom
decoding. Worth mentioning that the phantom feature decoding
issue does not exist when using the sketch in a conventional
way for 2nd-order feature extraction. However, when working
with a 3rd-order feature, a single flow feature has to be
distinguished within the flow by different bins for a distribution
representation. Here, the conventional sketch blindly decodes
the corresponding feature value, because it is impossible to

Fig. 7: Concept of phantom decoding.

determine which bin the flow was encoded with at the moment
of decoding, which we refer to the phantom decoding issue. As
shown in Fig. 7, the first bin (QL1) in the original distribution
vector of the flow has no value, and therefore, it is not encoded
into the sketch. However, this absence of encoding is unknown
during decoding, leading to a response with a random value to
the query for this non-existent value. This phantom decoding
issue results in amplified decoding values that are merely noise
to the distribution vector. We note that traditional sketches are
primarily designed to respond to positive queries of encoded
flows. However, in the context of decoding 3rd-order features,
simply confirming the presence of flows is insufficient to
prevent negative queries. It also becomes essential to verify the
appearance of specific bins for suppressing phantom decoding.
For example, HistSketch [25] recognized the issue, however,
detoured the issue on a data center with an unlimited resource
to record all flows’ bin information to solve the issue, neither
in the data plane nor within the sketch.

Membership Test for Suppressing Phantom Decoding. We
note that network flows are mostly found to be sparse in
bin space (i.e., feature distribution), which in turn, inevitably
brings the phantom feature decoding effect. Furthermore, given
a fixed memory, increasing the number of features (i.e., the
number of quantized bin sketches) to achieve higher resolution
can exacerbate the issue. To overcome the phantom decoding
challenge and achieve higher quality of the estimated distri-
bution, SketchFeature uses Bloom filter [9] as a membership
indicator to determine which features have been encoded
per flow. Similar to sketch virtualization, the Bloom filter
of SketchFeature is virtually divided for different bins using
distinct hash functions. When encoding a flow, the bit in the
Bloom filter corresponding to the bin is set to 1. Therefore,
unlike HistSketch [25] relying on data center resources to
record encoded bins, SketchFeature can address the phantom
decoding issue in the data plane. Due to the nature of the
Bloom filter, false negatives cannot occur, but false positives
are possible. However, the probability of false positives can be
theoretically analyzed and controlled (See section IV).

Fig. 8 (a) shows the negative impact of phantom decoding
in the baseline sketch and sketch virtualization. As shown,
the probability of phantom decoding is proportional to the
saturation level of the sketch, as the chance of falsely decoding
a value increases when there are fewer empty counters. Conse-
quently, it can be observed that the baseline sketch suffers from
a massive number of phantom decoding at the heavily saturated

6

(a) False positive distribution (phantom decoding issue)

(b) Sketch virtualization without membership test

(c) Sketch virtualization with membership test (SketchFeature)

Fig. 8: Step-by-step analyses: (a) compares the phantom
decoding error (false positive) between sketch partitioning
(baseline) and sketch virtualization (SketchFeature). (b) shows
both true and false positives with sketch virtualization design
only, and (c) shows that phantom decoding errors can be
resolved by combining our membership test design.

bins. On the other hand, the memory utilization of the sketch
virtualization approach is almost uniform across all bins,
resulting in a nearly constant rate of phantom decoding, even
for the rarely used bins, hurting feature measurement accuracy
significantly. Fig. 8 (b) shows the cumulative error for each
quantized bin when decoding the sketch virtualization method
without a membership test. As shown, the error caused by
phantom decoding (false positive) is much greater than errors
caused by actually encoded values (true positive). Our solution
to the problem is to use the Bloom filter for the bin record
tracking, and the operations have been shown in Algorithm 1.
Here, we allocated 2 MB (out of 6 MB total memory) to the
Bloom filter. As shown in Fig. 8 (c), although the error due
to true positives increased slightly due to the reduced sketch
size, the false positive errors were reduced to a negligible level.
Consequently, the overall error decreased, confirming that the
membership test effectively enhances accuracy.

All Put Together. To verify SketchFeature’s HAF feature
quality, we measured how closely the estimated packet size
distribution matches the original distribution on a per-flow ba-
sis. Fig. 9 (a) shows Weighted Mean Relative Error (WMRE),
a metric for measuring the similarity between the two distribu-
tions, where a value closer to 0 indicates less error. As shown,
sketch virtualization demonstrates better accuracy than the
sketch partition design (baseline) due to its memory efficiency.
Later, by resolving the phantom decoding issue with our
membership test function, SketchFeature measures the per-flow
distribution that is closest to the original among the methods.
Fig. 9 (b) compares an estimated packet size distribution of
SketchFeature with ground truth in log-scale. As shown, in
bin QL1, where no packets are distributed, the baseline sketch

(a) Per-flow distribution quality (b) Traffic distribution quality

Fig. 9: Accuracy comparison of sketch partitioning (baseline),
sketch virtualization, and SketchFeature (sketch virtualization
+ membership test). 6 MB of memory space was given to
measure the 3rd-order distribution feature quantized in 50 bins.

does not suffer from the phantom decoding issue. Thus, it can
perfectly decode 0 from the sketch. However, in bin QL2,
where packets are mostly distributed, NetWarden’s estimated
packet count is 12.58 times higher than the ground truth. On
the other hand, SketchFeature’s estimated number of packets
ranges from 1.02 to 1.58 times higher than the ground truth,
which is much lower than the overall average estimated error
of the baseline (i.e., 3.68 times higher than the ground truth),
which infers SketchFeature can perform the measurement that
is closer to the original distribution. Moreover, we can observe
that the accuracy of the baseline sketch is heavily influenced
by the feature distribution, whereas SketchFeature effectively
transforms the distribution to be almost uniform benefiting
from sketch virtualization, thereby reducing overall error
significantly. Therefore, SketchFeature achieves HAF feature
measurement by providing 1) higher resolution for distribution
features benefited from sketch virtualization delivered memory
efficiency, 2) all flow encoding capacity with sketch scalability,
and 3) full-range feature measure with negligible error, due to
the effectiveness of membership test for resolving the phantom
decoding issue.

IV. THEORETICAL ANALYSIS

In this section, we analyze the phantom decoding proba-
bility and error bounds of the baseline sketch (Baseline) and
SketchFeature. To do so, we first summarize the necessary
notation in Table I. Then, we compare the performance of the
baseline sketch and SketchFeature through theoretical proofs
and evaluate the results obtained by substituting real datasets.

A. Probability of Phantom Decoding

Both baseline and sketch virtualization sort inputs into q
quantized bins, which inevitably incurs phantom decoding to
result in poor measurement results. In this section, the phantom
decoding probabilities for both schemes are presented.

Lemma 1 (Phantom decoding probability of sketch virtualiza-
tion). Given sketch virtualization consisting of a Count-Min
sketch with w counters in d layers, the phantom decoding
probability when inserting n distinct elements (or flow in our
context) is as follows:

Pphantom =
(
1− e−n/w

)d
.

7

Proof. Considering the decoding process of Count-Min
sketch [15], the scenario where a non-existent flow decodes
a phantom feature value occurs when all of d counters for the
flow in every layer are non-empty, which is phantom decoding
that we have defined. Thus, after encoding all elements,
the probability that all of the corresponding d counters are
non-empty for a non-existent flow represents the phantom
decoding probability. This can be calculated similarly to the
false positive probability in Bloom filter [9].

Encoding n distinct elements into sketch virtualization,
which comprises d layers with w counters each, the probability
that a specific counter in any layer is not empty can be
expressed as follows:

Pnon-empty = 1−
(
1− 1

w

)n

,

When a non-existent element is queried, the probability of
encountering a phantom decoding, where all d layers are not
empty, can be calculated as:

Pphantom =

(
1−

(
1− 1

w

)n)d

,

Assuming that w is sufficiently large, the above expression
can be approximated as follows:

Pphantom = lim
w→∞

(
1−

(
1− 1

w

)n)d

=
(
1− e−n/w

)d
.

The baseline sketch strictly separates memory space into
q independent memory spaces running each sketch for q
quantized bins, and no crossover of a packet is allowed across
bins. Therefore, we can regard it as a system having q parallel
and isolated sketches.

Lemma 2 (Phantom decoding probability of baseline). If the
l-th quantized bin sketch of the baseline sketch having q bins
consists of d layers, each with w/q counter, then the phantom
decoding probability for partitioned individual sketches is as
follows:

P ′
phantom =

(
1− e−q·nl/w

)d
.

Proof. The baseline sketch differs from SketchFeature in that
it utilizes hard partitioning to divide the sketch space into 1/q
quantized bins, each independently used for quantized bin-
level operations. In the same memory setting, each sketch with
a width of w/q, and the l-th quantized bin sketch of baseline
contains nl elements. By leveraging the phantom decoding
probability of Lemma 1, the phantom decoding probability of
the l-th quantized bin sketch in baseline can be computed.

Theorem 1. If the number of elements encoded in the l-th
quantized bin sketch of the baseline sketch exceeds 1/q of the
entire dataset, then the phantom decoding probability of base-
line is greater than or equal to that of sketch virtualization.
In other words,

If
1

q
≤ nl

n
, then P ′

phantom ≥ Pphantom.

Proof. When comparing Lemma 2 with Lemma 1, if n ≤ q ·nl,
the phantom decoding probability of baseline is greater than

TABLE I: Notions

Params Description
n The number of all distinct flows
ni The number of distinct tuples in the i-th quantized bin
q The number of quantized bins in total
k The average number of packets per flow
b The average number of bins occupied by a flow
d The number of layers of the baseline sketch and SketchFeature
w The number of counters in each layer of SketchFeature

afij The actual count of the i-th flow in the j-th bin (i ≤ n, j ≤ q)
Aj The number of counts in the j-th quantized bin, Aj =

∑
i afij

A The total number of counts in all bins, A =
∑

j Aj = nk

or equal to that of sketch virtualization. Therefore, when a
quantized bin has more than 1/q elements of the entire dataset,
the phantom decoding probability in the bin of baseline is
greater than that of sketch virtualization.

Theorem 1 leads to a strong demand for membership tests,
which eliminates the adverse effect of negative queries by
limiting phantom decoding probability in every bin.

B. Error Bound Analysis of Sketch Virtualization

In this section, we compare the error bounds of the
baseline and SketchFeature based on the error bound proof
of Count-Min sketch. The proof assumes that decoding is
performed only for the elements that have been encoded, which
is justified by the membership test algorithm using Bloom
filter [9] can suppress the phantom decoding probability to
a negligible extent. For a fair comparison, only the sketch
error excluding errors caused by phantom decoding issues is
taken into account in both schemes. While Count-Min sketch is
designed to collect 2nd-order features, the baseline sketch and
SketchFeature utilize it as a primitive for the 3rd-order sketch
with different encoding and decoding methods. To analyze
the baseline sketch and SketchFeature using the error bound
analysis of the Count-Min sketch, we define the notation as
shown in Table I. Also, we set the width of SketchFeature
as w = ⌈e/ϵ⌉ and the number of layers as d = ⌈ln (1/δ)⌉
for the error bound parameter ϵ and the probability guarantee
parameter δ.

Theorem 2 (Error Bound of SketchFeature). The decoded
feature value âfij of the i-th flow in the j-th bin has the
following guarantees: afij ≤ âfij ; and with probability at
least 1− δ,

âfij ≤ afij + ϵ ·
∑
j

Aj .

Proof. In a sketch extracting 2nd-order features of network
traffic, the key to distinguish a different element is the flow
ID (e.g., source IP, 5 tuples). However, SketchFeature utilizes
a tuple composed of the flow ID and quantization level (i.e.,
quantized bin number) as the key to determine the encoding
counter among w counters in the sketch. Therefore, the total
number of distinct elements (or flows), denoted as n, is defined
not by the count of distinct flow IDs but by the count of distinct
tuples consisting of flow ID and quantization level. Here, we
note that Count-Min’s error bound is limited not by the total
number of distinct elements (or flows) but by the total number
of data (or packets). Assuming no phantom decoding issue, the

8

error bound of SketchFeature is equivalent to that of a Count-
Min sketch encoding and querying n×q distinct elements.

Theorem 3 (Error Bound of Baseline). When the decoded
feature value âfij belongs to the j-th quantized bin sketch, it
has the following guarantees: afij ≤ âfij ; and with probability
at least 1− δ,

âfij ≤ afij + q · ϵ ·
∑
i

afij ,

where q is the total number of quantized bins, and
∑

i afij =
Aj is the number of packets encoded in the j-th quantized bin.

Proof. The baseline sketch differs from SketchFeature in that it
employs hard partitioning, creating q individual quantized bin
sketches, and encodes elements into the respective sketches.
Consequently, only Aj packets belonging to nj flows are en-
coded in the j-th quantized bin sketch. Assuming the baseline
sketch has the same memory as SketchFeature, the width of
baseline’s quantized bins is approximately w/q. As a result,
the error bound of the j-th quantized bin sketch in the baseline
sketch can be considered equivalent to that of a Count-Min
sketch with a width of w/q, encoded results of Aj packets
belonging to nj flows are in the j-th quantized bin.

From the perspective of the feature value distribution, The-
orem 2 and Theorem 3 imply that SketchFeature’s estimation
has the same error bound for all elements across bins, while
the baseline sketch’s error bounds vary depending on the
distribution of the dataset over q bins. That is, the baseline
sketch’s measurement accuracy estimation is unstable giving
fluctuating error bounds (q · ϵ · Aj) for a bin j, whereas
SketchFeature can be seen as adding relatively uniform errors
(ϵ ·
∑

Aj) to all elements across all quantized bins.

1) Total Error Bound Comparison: In the previous section,
we examined the error bounds of the decoded feature values
for both baseline and SketchFeature for a specific element (or
flow). In this section, we will compare the total sum of error
bounds for all elements, considering the distribution of the
dataset. To utilize the error bounds derived from Theorems 2
and 3, we assume that for sufficiently large d and sufficiently
small δ, all elements satisfy the defined error bounds. Before
introducing the main theorem, a theorem is presented to find a
range of inner products of two probability distributions, flow
cardinality probability distribution and packet size probability
distribution over quantized bins.

Theorem 4. Let k =
∑

Ai/n, and b =
∑

ni/n, where Ai is
the number of packets encoded in i-th bin by SketchFeature,
and n is the total number of distinct flows. We assume q ≥ 2
and k/b ≥ (q + 1)/(q − 1). Let p = (p1, . . . , pq) be the
probability distribution of the number of distinct elements (or
flows) over q quantized bins, where pl = nl/nb is a fraction of
distinct flows in the l-th quantized bin over the total number
of distinct flow-bin pairs. That is, p is the flow cardinality
probability distribution. Also, let p̂ = (p̂1, . . . , p̂q) be the
probability distribution of the number of packets over q bins,
where p̂l = Al/nk is the fraction of packets encoded in the l-th
quantized bin over the total number of packets. Then, the inner
product of the two probability distributions p and p̂ satisfies

b

k(q − 1)
≤ (p1, p2, . . . , pq) · (p̂1, p̂2, . . . , p̂q) ≤ 1

Proof. The upper bound p · p̂ ≤ 1 follows from the
Cauchy–Schwarz inequality. Below we prove the lower bound
p · p̂ ≥ b

k(q−1) .

Since Al ≥ nl, l = 1, . . . , q, we have

p̂l ≥
b

k
pl, l = 1, . . . , q.

Therefore, p · p̂ ≥ m, where

m = min
(x,y)∈C

x · y.

Here, C is the set of all (x, y) ∈ Rq × Rq such that
x = (x1, . . . , xq) and y = (y1, . . . , yq) are probability vectors
satisfying

xl ≥
b

k
yl, l = 1, . . . , q.

Note that min
(x,y)∈C

x ·y exists, since x ·y is continuous in (x, y)

on a compact set C. Now, it suffices to show m = b
k(q−1) to

complete the proof.

For every ((x1, . . . , xq), (y1, . . . , yq)) ∈ C, there is a
permutation (σ1, . . . , σq) such that yσ1

≤ · · · ≤ yσq
.

Since ((xσ1
, . . . , xσq

), (yσ1
, . . . , yσq

)) ∈ C and (x1, . . . , xq) ·
(y1, . . . , yq) = (xσ1

, . . . , xσq
) · (yσ1

, . . . , yσq
), we have

m = min
(x,y)∈C1

x · y,

where C1 = {(x, y) ∈ C : y1 ≤ · · · ≤ yq}.
If (x, y) ∈ C1, then x · y ≥ x̃ · y, where

x̃l =

{
1−

∑q
j=2

b
kyj , if l = 1

b
kyl, if 2 ≤ l ≤ q.

This is verified as follows:

x · y − x̃ · y

=

q∑
l=2

(xl − x̃l) · yl

=

((
1−

q∑
l=2

xl

)
−

(
1−

q∑
l=2

x̃l

))
y1 +

q∑
l=2

(xl − x̃l) · yl

=

q∑
l=2

(xl − x̃l) · (yl − y1)

≥ 0,

since xl − x̃l ≥ 0 and yl − y1 ≥ 0 for 2 ≤ l ≤ q. Therefore,
x · y ≥ x̃ · y. Furthermore, (x̃, y) ∈ C1, since x̃1 ≥ x1 ≥ b

ky1
and x̃l =

b
kyl for 2 ≤ l ≤ q. Hence,

m = min
(x,y)∈C2

x · y,

where C2 = {(x, y) ∈ C1 : xl =
b
kyl for 2 ≤ l ≤ q}.

If (x, y) ∈ C2, then x · y ≥ x̃ · ỹ, where x̃ = (x̃1, . . . , x̃q)
and ỹ = (ỹ1, . . . , ỹq) are given by

x̃l =

{
x1, if l = 1,
1

q−1

∑q
j=2 xj , if 2 ≤ l ≤ q,

ỹl =

{
y1, if l = 1,
1

q−1

∑q
j=2 yj , if 2 ≤ l ≤ q.

9

Therefore,
m = min

(x,y)∈C3

x · y,

where C3 = {(x, y) ∈ C2 : x2 = · · · = xq}. Note that C3 is
the set of all (x, y) ∈ Rq × Rq such that

0 ≤ y1 ≤ y2 = · · · = yq,

q∑
l=1

yl = 1,

x2 = · · · = xq =
b

k
y2, x1 = 1− (q − 1)b

k
y2.

Therefore, (x, y) ∈ C3 if and only if there is t ∈ R such that

x =

(
1− b(1− t)

k
,
b

k

1− t

q − 1
, . . . ,

b

k

1− t

q − 1

)
, (1)

y =

(
t,
1− t

q − 1
, . . . ,

1− t

q − 1

)
, (2)

0 ≤ t ≤ 1− t

q − 1
.

Note that 0 ≤ t ≤ 1−t
q−1 if and only if 0 ≤ t ≤ 1

q . For x and y
given by (1) and (2), we have

x · y =
bqt2 + ((k − b)(q − 1)− 2b) t+ b

k(q − 1)
, (3)

which is increasing in t on [0, 1
q]. Therefore, m is given by

(3) evaluated at t = 0. Thus, m = b
k(q−1) .

Now, we are ready to calculate the range of error bounds.

Theorem 5. Let’s denote the sum of error bounds for all
elements of SketchFeature and baseline sketch as σsf and
σbaseline, respectively. Then, the following inequality holds for
a quantized distribution with q bins:

1

q
· σbaseline ≤ σsf ≤

k(q − 1)

qb
· σbaseline.

where k =
∑

Ai/n, and b =
∑

ni/n, where
∑

Ai is the
total number of packets encoded in SketchFeature, and n is
the total number of distinct flows, assuming q ≥ 2 and k ≥ b.

Proof. For SketchFeature, due to memory virtualization for
multiple sketches, every element has the same error bound.
According to Theorem 2 and the fact that only nb flow and bin
pairs are to be decoded, it has a total error bound as follows:

σsf =

n∑
i=1

q∑
j=1

(ai − âi) ≤ nb · ϵ ·
∑

A, (4)

For the baseline sketch, depending on the distribution of the
packet features (PS, IPD), the error bounds vary across q
quantized bin sketches. The error bound for the l-th quantized
bin sketch is q · ϵ ·

∑
Al as proved in Theorem 3. Given that

the number of distinct elements encoded in the sketch is nl,
the sum of error bounds can be expressed as follows:

σbaseline ≤ q · ϵ · (n1 ·
∑

A1+n2 ·
∑

A2+ . . .+nq ·
∑

Aq),
(5)

Since n1 + n2 + . . . + nq = nb, we can substitute nl =
pl ·nb for a flow’s cardinality probability distribution pl where
p1+p2+. . .+pq = 1. pl is a fraction of distinct flows in the l-th

quantized bin over the total sum of the number of distinct flows
over bins. Additionally, since

∑
A1 +

∑
A2 + . . .+

∑
Aq =∑

A, we can similarly substitute
∑

Al = p̂l ·
∑

A for a packet
size probability distribution p̂l, where where p̂1+p̂2+. . .+p̂q =
1. Using Eq. 4 and replacing nl and

∑
Al with pl · nb and

p̂l ·
∑

A in Eq. 5, respectively, we obtain

σbaseline ≤ q · nb · ϵ ·
∑

A · (p1 · p̂1 + p2 · p̂2 + . . .+ pq · p̂q)
= q · (p1, p2, . . . , pq) · (p̂1, p̂2, . . . , p̂q) · σsf ,

(6)

By directly applying Theorem 4,

b

k(q − 1)
· q · σsf ≤ σbaseline ≤ q · σsf .

By rearranging the above for σsf , we finally obtain

1

q
· σbaseline ≤ σsf ≤

k(q − 1)

qb
· σbaseline

Implications. Observing Eq. 6, σbaseline is handicapped by
q factors and advantaged by the inner product. q handicap is
obvious considering the case that every packet is inserted into
one bin. Also, the advantageous case for the baseline sketch
happens when the inner product P · Q has 1/q when either
packets or flows are uniformly distributed to q bins, since
(p1 = 1/q, p2 = 1/q, . . . , pq = 1/q) · (p̂1, p̂2, . . . , p̂q) =
1/q ·

∑
p̂i = 1/q. By Eq. 6,

σbaseline = q · 1
q
· σsf = σsf ,

which means the baseline sketch’s total error is the same as
SketchFeature’s. This observation supports our idea of sketch
virtualization, where any given input distribution is converted
into a uniform distribution by sketch virtualization’s memory
address space randomization. This address randomization of
sketch virtualization is equivalent to the case that uniformly
distributed cardinality and packet size distributions are fed
to the baseline sketch. This signifies the memory-efficient
scenario of the baseline sketch, where it evenly distributes
n/q data points across q sketches. However, in the case of
a skewed distribution, the worst-case scenario occurs when
all n elements are inserted into a single quantized bin. In this
case, the baseline sketch achieves the same total error bound as
SketchFeature encoding n elements with 1/q of the memory.
The upper bound of the total error occurs only when the
baseline sketch is fed by data with a very peculiar distribution
(one bin with a large number of flows and the others with
uniformly distributed flows) shown in Theorem 4. This implies
that SketchFeature can be improved further if we can distribute
traffic in a specific form, which is not practical. Considering
that the 3rd-order traffic distribution is highly skewed in reality,
the total error of SketchFeature distributes somewhere around
1/q of the baseline sketch.

V. EVALUATION

In this section, we analyze SketchFeature’s feature ex-
traction performance varying memory and workload. Next,
we conduct an end-to-end system evaluation, comparing the
SketchFeature-based system with baseline, perfect, and state-
of-the-art systems, leveraging diverse attack detection tasks.

10

(a) IPD packet distribution (b) PS packet distribution

Fig. 10: The percentage of packets within each bin when
quantizing 5-second benign and malicious traces into 50 bins.

A. Metrics

Weighted Mean Relative Error (WMRE). WMRE is used
to evaluate distribution feature quality. It is represented by∑n

i=1|ai−âi|∑n
i=1(

ai+âi
2)

, where n is the number of distinct bins, and ai and
âi are the actual and estimated value for each bin, respectively.

Area Under the ROC Curve (AUC). We used AUC to
evaluate the model’s performance, considering all possible
classification thresholds for a robust comparison. This metric
quantifies the performance of attack detection models by
comparing the True Positive Rate (TPR) and False Positive
Rate (FPR) at various classification thresholds (ROC curve).

F1 Score. We used the F1 score to evaluate the accuracy of
the binary classification model. It is defined as the harmonic
mean of precision (the proportion of true positive results in all
positive predictions) and recall (the proportion of true positive
results in all actual positives) to denote the trade-off between
precision and recall.

Accuracy. Accuracy refers to the measure of the correctness
of a model’s predictions compared to the actual values. It is
calculated as the ratio of the number of correct predictions to
the total number of predictions made by the model.

False Negative and Positive Rate (FNR and FPR). We used
FNR and FPR to show the target flow prediction performance
of a model under the imbalanced dataset. FNR measures
the proportion of actual positive instances (attacks) that are
incorrectly classified as negative (benign) by the model. FPR
measures the proportion of actual negative (benign) instances
that are incorrectly classified as positive (attack) by the model.

B. Feature Quality: Per-flow Distribution

To verify the design effectiveness, we compare the feature
accuracy of SketchFeature with the baseline sketch varying
measurement tasks, memory space, and workload.

Dataset. We used four different datasets, including CAIDA
(benign) [1], Facet covert storage channel (CSC) [31], CIC
(DDoS) [43], and botnet (Botnet) [8]. The covert timing
channel (CTC) trace was excluded from the feature quality
analysis as it represents a synthetic dataset [50]. For a realistic
scenario, each attack trace was mixed separately with CAIDA
benign traffic to distinguish security use cases. For feature
integrity, the original packet order with raw timestamps is
preserved during the dataset mixture.

Settings. SketchFeature records per-flow 3rd-order (vector)
features, including inter-packet delay (IPD) and packet size
(PS) distribution, which significantly increases the number
of possible distinct elements for encoding. This amplification
is proportional to the feature granularity (i.e., the number
of quantization bins). For instance, in our 3rd-order feature
quality experiments, we quantize each per-flow feature into
50 bins, which increases the number of distinct (encodable)
elements by up to 50 times compared to 2nd-order (scalar)
feature measurement tasks. Fig. 10 illustrates quantized IPD
and PS distributions of our datasets. Here, we quantize IPD
features up to 1 second and PS features from 1 to 1500 bytes,
within 50 bins. For a fair comparison, we allocate equal mem-
ory space to all schemes. Within the given memory budget,
SketchFeature reserves 2 MB specifically for the Bloom filter-
based membership test for suppressing phantom decoding.

Accuracy Varying Memory. Fig. 11 compares the feature
quality of baseline and SketchFeature with 5-second traces by
varying memory settings. With different traces (i.e., Benign,
CSC, DDoS, and Botnet), Fig. 11(a)-(d) illustrate IPD feature
accuracy and Fig. 11 (e)-(h) depict PS feature accuracy.
As shown, SketchFeature consistently achieves a significantly
lower WMRE across all tasks compared to the baseline.
Notably, in attack trace measurements, SketchFeature achieves
near-zero error as memory increases, and in benign trace mea-
surements, we observe a rapid error reduction with additional
memory allocation. These results validate both our experi-
mental (section III-C) and theoretical analyses (section IV-B),
demonstrating the effectiveness of SketchFeature’s design at
scale. Meanwhile, SketchFeature maintains high performance
even under extremely low-memory conditions, with 1 MB
allocated to Sketch and 2 MB to the Bloom filter within a 3 MB
total memory budget. This efficiency is contributed by Sketch-
Feature’s sketch virtualization design balancing bins across
the entire memory space and suppressed phantom decoding
with the membership test function. In contrast, the baseline
employs static memory partitioning for bins, which limits
memory efficiency due to highly skewed bin distributions.

Accuracy Varying Workload. Next, we fixed the total mem-
ory space to 6 MB and varied the workload up to 60 seconds
of trace for a pressure test. Fig. 12 (a)-(h) show the WMRE
over time by varying features and traces. With the increased
pressure, the sketch memory will be saturated. However,
we observe SketchFeature achieves non-compromised feature
accuracy for attack flow measurement and consistently outper-
forms baseline, thanks to sketch virtualization and phantom-
free decoding designs. We noticed that SketchFeature shows
rapid growth of errors for the benign trace measurement
due to the domination of mice flows, which are sensitive to
small noises. However, we found that mice flow impact on
false positives is negligible for ML-based applications (see
section V-C and Table II for details).

C. End-to-end System Evaluation: Security Use Cases

Next, we provide the end-to-end system evaluation and
compare SketchFeature with the existing data plane solutions
that leverage 3rd-order [6], [50] and 2nd-order [63] features
varying security use cases. To evaluate the robustness and
efficacy of SketchFeature, we also compare SketchFeature with
perfect measurement and the baseline sketch (see section III),

11

(a) Benign (IPD) (b) CSC (IPD) (c) DDoS (IPD) (d) Botnet (IPD) (e) Benign (PS) (f) CSC (PS) (g) DDoS (PS) (h) Botnet (PS)

Fig. 11: Comparison of 3rd-order (vector) feature quality. Average WMRE of distribution features (IPD and PS) varying memory.

(a) Benign (IPD) (b) CSC (IPD) (c) DDoS (IPD) (d) Botnet (IPD) (e) Benign (PS) (f) CSC (PS) (g) DDoS (PS) (h) Botnet (PS)

Fig. 12: Comparison of 3rd-order (vector) feature quality. Average WMRE of distribution features (IPD and PS) varying workload.

which represents a feasible solution for HAF 3rd-order feature
extraction in the data plane.

Dataset. We varied security use cases with four attack traces,
including Covert Storage Channel (CSC), Covert Timing Chan-
nel (CTC), Distributed Denial of Service (DDoS), and botnet
(Botnet) traffic. For each attack type, we used 80% of attack
flows for training and 20% for testing, with each set mixed
separately with 5 seconds of CAIDA [1] as background traffic.
For CSC, we selected all 1 K attack flows from traffic encoded
by Facet [31], a censorship resistance tool over Skype. For
CTC, we followed [42] to craft a dataset containing 6 K
attack flows for encoding 4 bits of data by varying IPD across
different ranges and combinations. For DDoS, we selected 10
K attack flows from two categories of DDoS, namely, reflection
(e.g., NTP, DNS) and flooding (e.g., UDP, LDAP, SNMP) from
CIC-DDoS [43]. For botnet, we selected 8.6 K attack flows
from ISCX botnet dataset [8], containing malicious flows of
Neris and Virut botnets.

Settings. We adhere to the originally proposed feature ex-
traction design tailored to detect specific types of attacks for
each scheme. In CTC detection, we quantize the IPD feature
values for up to 5 seconds in 1000 bins. In CSC, DDoS, and
botnet detections, we quantize the PS feature values up to
1500 Bytes in 94 bins [6]. For a fair comparison, we allocated
equal resources in the switch’s data plane and control plane
for all schemes. In the data plane, we allocated 6 MB of data
plane memory for all schemes for feature extraction. In the
control plane, we used a 1-D Convolutional Neural Network
(CNN) model with three layers of 1-D convolutional layers
(followed by max-pooling layers) followed by three layers
of Multi-Layer Perceptron (MLP) with Rectified Linear Unit
(ReLU) activation function and dropout rate of 0.2 to prevent
overfitting. To ensure robustness, the collected feature was
tested and averaged over 10 independently trained models.
To prevent temporal data snooping [5], we eliminated time
dependency between the training and test datasets.

Table II compares performance of SketchFeature with the
other systems across security use cases presented in their
respective original studies.

Compared to Baseline and Perfect Measures. The baseline
serves as a feasible data plane solution for HAF feature

extraction using hard partitioning of the sketch, yet its accuracy
is heavily influenced by traffic distribution. As shown in
Fig. 10, CSC attacks exhibit a distinct pattern compared to
benign traffic, resulting in baseline performance very close
to perfect measurement demonstrated in Table II. In contrast,
in CTC, DDoS, and Botnet attack scenarios, the baseline
approach performs poorly due to poor feature quality for
both attack and benign traffic, resulting in extremely poor F1
scores (<0.20) and AUC values (<0.60) overall. Promisingly,
SketchFeature achieves comparable performance with perfect
measure in terms of AUC, accuracy, FPR, and FNR. However,
for the DDoS and botnet use cases, we observed approximately
13% reduction in F1 scores, dropping to 0.746 and 0.715,
respectively, due to the unavoidable sketch noise. Despite this,
SketchFeature still outperforms all existing approaches.

Compared to NetBeacon [63]. In CSC detection, NetBeacon
measures top-K bins only among a full range of the PS
distribution (3rd-order) feature, with strong assumption of prior
knowledge. We follow the configuration outlined in the original
work: top-6 quantized bins, including [96, 112), [112, 128),
[128, 144), [144, 160), [160, 176) and [176, 192). While its
mechanism for predicting long and short flows enables full-
flow coverage and good accuracy, our findings indicate that
incorporating the full range of 3rd-order features can yield even
better performance. In DDoS detection, NetBeacon mainly
works with 2nd-order features (i.e., per-flow minimum IPD and
minimum PS features), and alternates to 1st-order features (i.e.,
per-packet time-to-live, packet size, and protocol fields) in the
case of resource shortage. The results verify the superiority
of 3rd-order HAF features achieved by SketchFeature, with
significantly improved AUC by 25.6% and F1 score by 11%.

Compared to NetWarden [50]. For NetWarden [50], we
followed the original work to perform feature extraction in the
control plane and further utilized the KS test [41] for CTC
attack detection. As shown in Table II, NetWarden achieved
near-optimal performance. The reasons are twofold: first, it as-
sumed perfect suspicious flow (symptom) detection in the data
plane with prior knowledge (i.e., attack IPD > 1 ms); second, it
assumed unlimited resources in the control plane for all packet
measurements of the data plane elevated flows, for extracting
perfect per-flow IPD distribution features. Besides the relaxed
assumptions, such an approach is vulnerable under a control

12

TABLE II: End-to-end system evaluation.

Schemes AUC Acc. F1 FPR FNR
Covert Storage Channel (CSC)

Perfect Measure 0.999 0.999 0.981 0.0 0.020
Baseline 0.986 0.999 0.978 0.0 0.027
NetBeacon [63] 0.995 0.981 0.983 0.018 0.018
FlowLens [6] 0.502 0.998 0.132 0.0 0.928
SketchFeature 0.998 0.999 0.981 0.0 0.019

Covert Timing Channel (CTC)
Perfect Measure 1.0 1.0 1.0 0.0 0.0
Baseline 0.526 0.230 0.090 0.798 0.148
NetWarden [50] 0.999 0.999 0.999 0.0 0.0
FlowLens [6] 0.501 0.956 0.029 0.0 0.985
SketchFeature 0.999 0.996 0.965 0.003 0.0

Distributed Denial of Service (DDoS)
Perfect Measure 0.997 0.997 0.877 0.001 0.125
Baseline 0.561 0.991 0.197 0.0 0.875
NetBeacon [63] 0.738 0.995 0.636 0.0 0.521
FlowLens [6] 0.504 0.991 0.126 0.0 0.932
SketchFeature 0.994 0.994 0.746 0.004 0.130

Botnet
Perfect Measure 0.922 0.997 0.845 0.001 0.142
Baseline 0.494 0.979 0.007 0.012 0.978
FlowLens [6] 0.498 0.992 0.106 0.0 0.942
SketchFeature 0.914 0.995 0.715 0.003 0.172

plane flooding attack without a complex countermeasure (see
section II). In comparison, the proposed SketchFeature, with
data-plane-based HAF feature measurement, achieved near-
optimal results without prior knowledge of the attack and
exposing a clear attack surface to adversaries.

Compared to FlowLens [6]. The hash table-based
FlowLens [6] is configured to measure the full range of
features, with 1000 quantized bins for CTC attack and 94
bins for CSC, DDoS, and Botnet attack scenarios. As shown
in Table II, FlowLens demonstrates poor performance for all
tasks, especially in botnet detection. On average, it covered
only 12.6% of total flows, leading to the omission of more
than 90% of attack flows, a high FNR of 0.942, and a low
AUC of 0.498. Exact per-flow measurement using a hash table
contributed to the irreconcilable trade-off between flow and
feature scalability, which cannot but scarify partial flows or
features granularity for fixed memory space. On the contrary,
SketchFeature breaks through the trade-off by a sketch design
and achieves HAF feature extraction.

VI. DISCUSSIONS

Adversary with Pre-knowledge of SketchFeature. In our
threat model, adversaries are not allowed to access the switch’s
internal states, which means the attacker has to guess the seed
value of the hash function to exploit the hash collision of the
targeted flow, which is not trivial. Poisoning the entire sketch
with an imbalanced feature distribution is infeasible, given the
uniform and random counter-sharing nature of SketchFeature,
thanks to sketch virtualization design. Moreover, the HAF
feature measurement design allows SketchFeature to observe
all pattern shifts at a fine-grained level, benefiting advanced
ML technologies that address concept drift issues.

INDP Implementation. On Tofino-1 switch [2], SketchFeature
consumes only 7 stages out of a total of 12 stages. We note
that the up-to-date Tofino-2 switch equips 20 stages with much
more memory and computation resources [3], which will allow
SketchFeature to coexist with more complex and computation-
intensive applications, such as in-data-plane ML. However, we
note that current in-data-plane ML schemes [63], [54] support
up to 2nd-order features, and are not yet compatible with 3rd-
order features, but we anticipate advanced ML solutions soon
with the current trend. Lastly, we emphasize that SketchFea-
ture’s feature quality is independent of where ML functions
are deployed: data plane or control plane.

VII. RELATED WORK

Sketch is an essential tool for traffic measurement, and
it has proven its efficiency in operating on compact small
memory resources [46], [26], [22], [18], [27]. Especially with
the memory constraint in ASIC hardware switches [10], [16],
they have become popular for traffic measurement with the
main focus on extracting lower-dimensional 1st-order or 2nd-
order [45], [39], [44], [60], [56], [23], [29], [40] features.
Recently, a new phase of In-Network Intrusion Detection
Systems (IN-IDS) has emerged, aiming to eliminate the feature
transfer delay between the data plane and the control plane
by extracting features and leveraging an AI module to detect
attacks simultaneously [48], [52], [30], [62], [11], [47], [49].
However, lower-dimensional features showed limitations in
attack detection [63], highlighting the need for richer 3rd-
order vector features. FlowLens [6] realized IN-IDS by ex-
tracting 3rd-order vector features using a table with top-K
quantized bins to store flows. Another 3rd-order symptom
detector, NetWarden [50], utilizes sketches to enable full-range
measurements for all flows, but it suffers from low resolution.
There is also a body of works [24], [61], [33] proposed to
collect partial distribution-relation features, such as tail quan-
tile over a data stream, which differs from the focus of HAF
feature collection in the data plane by SketchFeature design.
The latest work, HistSketch [25], aimed to realize per-flow
item distribution by extending FlowLens’s exact measurement,
supported by remote data centers with unlimited resources.
This differs from SketchFeature, the first 3rd-order feature
collection sketch designed for the switches’ data plane.

VIII. CONCLUSION

In this paper, we propose SketchFeature, a novel approach
to collect 3rd-order features, including per-flow Packet Size
(PS) distribution and Inter-Packet Delay (IPD). These features
have been essential data for the recent success of AI for
malicious traffic detection. However, the collection of such
an approach is challenging due to the memory constraint in
the data plane. In this manner, we have devised two attack
mechanisms that can bypass the collection and measurement
of such a feature, successfully evading the detection logic of
traffic. Then, we proposed a sketch virtualization technique
to collect High-resolution, All-flow, and Full-range (HAF)
per-flow 3rd-order feature extraction. Finally, through our
extensive theoretical and empirical analysis, we have shown
the high quality and scalable feature collection for effective
attack detection.

13

ACKNOWLEDGMENT

The authors thank the anonymous shepherd and reviewers
for their valuable feedback. This work is supported by the
National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) No. RS-2023-00222385 and
No. RS-2023-NR077143, and the National Science Foundation
(NSF) under grant IIS-2211897. DaeHun Nyang and Rhongho
Jang are the corresponding authors.

REFERENCES

[1] “The cooperative association for internet data analysis, equinix chicago
data center,” [13:00-14:00, Apr 19 2018, from Sao Paulo to New
York]. [Online]. Available: https://www.caida.org

[2] “Edgecore WEDGE 100BF-32X.” [Online]. Available: https://www.
edge-core.com/product/dcs800/

[3] “Intel Tofino-2.” [Online]. Available: https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
tofino-2-series.html

[4] S. Abbasloo, C. Yen, and H. J. Chao, “Classic meets modern: a
pragmatic learning-based congestion control for the internet,” in Proc.
of ACM SIGCOMM, 2020.

[5] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in Proc. of USENIX Security, 2022.

[6] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and
A. Madeira, “Flowlens: Enabling efficient flow classification for ml-
based network security applications.” in Proc. of ISOC NDSS, 2021.

[7] D. Barradas, N. Santos, and L. E. T. Rodrigues, “Effective detection
of multimedia protocol tunneling using machine learning,” in Proc. of
USENIX Security, 2018.

[8] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards
effective feature selection in machine learning-based botnet detection
approaches,” in Proc. of IEEE CNS, 2014.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network inference with random forests,” arXiv preprint
arXiv:1909.05680, 2019.

[12] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in Proc. of ACM CCS, 2004.

[13] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. of ACM SIGCOMM, 2018.

[14] X. Chen, S. L. Feibish, M. Braverman, and J. Rexford, “Beaucoup:
Answering many network traffic queries, one memory update at a time,”
in Proc. of ACM SIGCOMM, 2020.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[16] P. Cui, H. Pan, Z. Li, J. Wu, S. Zhang, X. Yang, H. Guan, and G. Xie,
“Netfc: Enabling accurate floating-point arithmetic on programmable
switches,” in Proc. of IEEE ICNP, 2021.

[17] D. Dao, R. Jang, C. Jung, D. Mohaisen, and D. Nyang, “Minimizing
noise in hyperloglog-based spread estimation of multiple flows,” in
Proc. of IEEE/IFIP DSN, 2022.

[18] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[19] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in Proc. of ACM CCS, 2021.

[20] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious
traffic in real time via flow interaction graph analysis,” in Proc. of
ISOC NDSS, 2023.

[21] S. Gianvecchio and H. Wang, “Detecting covert timing channels: an
entropy-based approach,” in Proc. of ACM CCS, 2007.

[22] A. Goyal and H. D. III, “Approximate scalable bounded space sketch
for large data NLP,” in Proc. of EMNLP, 2011.

[23] L. Gu, Y. Tian, W. Chen, Z. Wei, C. Wang, and X. Zhang, “Per-flow
network measurement with distributed sketch,” IEEE/ACM Trans. Netw.,
vol. 32, no. 1, pp. 411–426, 2024.

[24] J. Guo, Y. Hong, Y. Wu, Y. Liu, T. Yang, and B. Cui, “Sketchpolymer:
Estimate per-item tail quantile using one sketch,” in Proc. of ACM
SIGKDD, 2023.

[25] J. He, J. Zhu, and Q. Huang, “Histsketch: A compact data structure
for accurate per-key distribution monitoring,” in Proc. of IEEE ICDE,
2023.

[26] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proc. of ACM SIGCOMM, 2017.

[27] R. Jang, S. Moon, Y. Noh, A. Mohaisen, and D. Nyang, “Instameasure:
Instant per-flow detection using large in-dram working set of active
flows,” in Proc. of IEEE ICDCS, 2019.

[28] C. Jung, S. Kim, R. Jang, D. Mohaisen, and D. Nyang, “A scalable and
dynamic acl system for in-network defense,” in Proc. of ACM CCS,
2022.

[29] S. Kim, C. Jung, R. Jang, D. Mohaisen, and D. Nyang, “A robust
counting sketch for data plane intrusion detection,” in Proc. of ISOC
NDSS, 2023.

[30] J.-H. Lee and K. Singh, “Switchtree: In-network computing and traffic
analyses with random forests,” Neural Computing and Applications, pp.
1–12, 2020.

[31] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over videoconfer-
encing for censorship circumvention,” in Proc. of Workshop on Privacy
in the Electronic Society, 2014.

[32] C. Liu, M. Xu, Y. Yang, and N. Geng, “DRL-OR: deep reinforcement
learning-based online routing for multi-type service requirements,” in
Proc. of IEEE INFOCOM, 2021.

[33] J. Liu, H. Dai, R. Xia, M. Li, R. B. Basat, R. Li, and G. Chen, “Duet:
A generic framework for finding special quadratic elements in data
streams,” in Proc. of ACM WWW, 2022.

[34] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in Proc. of USENIX Security, 2021.

[35] X. Luo, E. W. Chan, and R. K. Chang, “Tcp covert timing channels:
Design and detection,” in Proc. of IEEE DSN, 2008.

[36] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. of ACM SIGCOMM, 2017.

[37] S. M. M. Mirnajafizadeh, A. R. Sethuram, D. Mohaisen, D. Nyang,
and R. Jang, “Enhancing network attack detection with distributed and
in-network data collection system,” in Proc. of USENIX Security, 2024.

[38] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” in
Proc. of ISOC NDSS, 2018.

[39] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in Proc. of USENIX NSDI, 2022.

[40] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Stenkiste, “Sketchovsky:
Enabling ensembles of sketches on programmable switches,” in Proc.
of USENIX NSDI, 2023.

[41] P. Peng, P. Ning, and D. S. Reeves, “On the secrecy of timing-based
active watermarking trace-back techniques,” in Proc. of IEEE S&P,
2006.

[42] S. H. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing
channels: Theory to implementation,” in Proc. of IEEE INFOCOM,
2009.

[43] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in Proc. of IEEE ICCST, 2019.

[44] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “Fcm-sketch:
generic network measurements with data plane support,” in Proc. of
ACM CoNext, 2020.

14

[45] L. Tang, Q. Huang, and P. P. Lee, “A fast and compact invertible
sketch for network-wide heavy flow detection,” IEEE/ACM Trans.
Netw., vol. 28, no. 5, pp. 2350–2363, 2020.

[46] M. Tirmazi, R. B. Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proc. of ACM SIGMOD, 2020.

[47] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in Proc. of
IEEE INFOCOM, 2021.

[48] G. Xie, Q. Li, C. Cui, P. Zhu, D. Zhao, W. Shi, Z. Qi, Y. Jiang, and
X. Xiao, “Soter: Deep learning enhanced in-network attack detection
based on programmable switches,” in Proc. of IEEE SRDS, 2022.

[49] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in Proc. of IEEE INFOCOM, 2022.

[50] J. Xing, Q. Kang, and A. Chen, “NetWarden: Mitigating network covert
channels while preserving performance,” in Proc. of USENIX Security,
2020.

[51] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries,” in Proc. of USENIX
Security, 2021.

[52] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proc. of ACM Workshop on Hot
Topics in Networks, 2019.

[53] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. A. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in Proc. of USENIX NSDI, 2020.

[54] J. Yan, H. Xu, Z. Liu, Q. Li, K. Xu, M. Xu, and J. Wu, “Brain-on-
switch: Towards advanced intelligent network data plane via nn-driven
traffic analysis at line-speed,” in Proc. of USENIX NSDI, 2024.

[55] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC:
automatic ECN tuning for high-speed datacenter networks,” in Proc. of
ACM SIGCOMM, 2021.

[56] K. Yang, S. Long, Q. Shi, Y. Li, Z. Liu, Y. Wu, T. Yang, and Z. Jia,
“Sketchint: Empowering INT with towersketch for per-flow per-switch
measurement,” IEEE Trans. Parallel Distributed Syst., vol. 34, no. 11,
pp. 2876–2894, 2023.

[57] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in Proc. of ACM SIGCOMM, 2018.

[58] C. Zhang, Z. Cai, W. Chen, X. Luo, and J. Yin, “Flow level detection
and filtering of low-rate ddos,” Comput. Networks, vol. 56, no. 15, pp.
3417–3431, 2012.

[59] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in Proc. of ISOC NDSS, 2020.

[60] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang, “Cocosketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proc. of ACM SIGCOMM, 2021.

[61] F. Zhao, S. Maiyya, R. Wiener, D. Agrawal, and A. E. Abbadi,
“Kll±approximate quantile sketches over dynamic datasets,” in Proc.
of VLDB Endowment, 2021.

[62] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,”
in Proc. of ACM SIGCOMM, 2021.

[63] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in Proc. of USENIX Security, 2023.

[64] G. Zhou, G. Chen, F. Lin, T. Xu, D. Wei, J. Wu, L. Chen, Y. Lu, A. Qu,
H. Shao, and H. Jiang, “Primus: Fast and robust centralized routing for
large-scale data center networks,” in Proc. of IEEE INFOCOM, 2021.

[65] H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu, “Mew: En-
abling large-scale and dynamic link-flooding defenses on programmable
switches,” in Proc. of IEEE S&P, 2023.

[66] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin,
“Network planning with deep reinforcement learning,” in Proc. of ACM
SIGCOMM, 2021.

APPENDIX

A. Evaluation Based on the Proof

Sketch virtualization utilizes the given memory space as
a single sketch, distinguishing positions solely by hashes,
regardless of which quantized bin the data belongs to. Con-
sequently, any never-encoded element querying it would yield
the same phantom decoding probability. On the other hand,
the baseline sketch divides the given memory space into q
sketches, each encoding quantized bins separately. As a result,
the phantom decoding probability increases with the presence
of more data in individual quantized bin sketches. Fig. 13
illustrates the phantom decoding probability in each quantized
bin sketch when inserting benign datasets into the baseline
sketch and sketch virtualization, based on both theorem and
implementation approaches. As evident from the figure, both
baseline sketch and sketch virtualization exhibit implemen-
tation experiment results similar to what was proven in the
theorem. Furthermore, the feature distribution of the dataset
has a similar trend to the phantom decoding probability of the
baseline sketch, confirming that the probability of phantom
decoding is higher in regions where the dataset is more
abundant. In the case of sketch virtualization, since it shares a
single sketch across all quantized bin sketches, memory usage
is more balanced, leading to generally lower phantom decoding
probability. Furthermore, sketch virtualization does not have
partitions, resulting in phantom decoding occurring at similar
probabilities across all quantized bin sketches regardless of
dataset distribution.

(a) Baseline Sketch

(b) Sketch Virtualization

Fig. 13: Phantom decoding probability when encoding the
packet size distribution of 2.6 M benign traces using the
baseline sketch and sketch virtualization with 50 quantized
bins in 6 MB of memory. The theorem result is obtained by
substituting the parameters of the dataset into the theorem,
while the implementation result is obtained by inserting the
dataset into the implemented sketches.

B. Analysis Varying Parameters

Next, we evaluate SketchFeature by varying memory, con-
figuration, and feature granularity (quantization bins).

Varying Sketch Memory. Fig. 14 (a) illustrates the variation
in WMRE when varying the size of the sketch and fixing the
Bloom filter at 2 MB. Due to the sufficient size of the Bloom
filter, phantom decoding rarely occurs, allowing us to observe

15

the variations in the error introduced by the sketch. As memory
increases, the probability of multiple flows colliding in a single
counter decreases, enabling both IPD and PS distributions to
be measured more accurately. The PS distribution has a higher
WMRE than the IPD distribution because the PS distribution of
the benign dataset contains more distinct flow and feature pairs
than the IPD distribution. In other words, when measuring the
PS distribution, more counters in the sketch remain non-empty
by encoding more distinct QL values per flow.

Varying Bloom-Filter Memory. To analyze the impact of
Bloom filter size on accuracy, we kept the sketch size constant
at 4 MB and increased the Bloom filter size in steps of
0.5 MB. As shown in Fig. 14 (b), when measuring IPD,
the issue of phantom decoding is not significant due to the
smaller number of distinct flow and feature pairs. This results
in minimal changes in WMRE, even with increased memory
size. However, for PS distribution, the variation in WMRE is
relatively significant. It can be observed that using a Bloom
filter of approximately 2 MB or larger effectively mitigates
accuracy degradation caused by the phantom decoding issue.

(a) Varying sketch size (b) Varying bloom filter size

Fig. 14: The average WMRE of the flow-wise feature distribu-
tion measured by SketchFeature with 50 quantized bins, while
varying the size of Bloom filter and the sketch.

Varying Quantized Bins. Fig. 15 shows the accuracy differ-
ence between the baseline sketch and SketchFeature by varying
the number of quantized bins Q. Since the baseline sketch
divides the memory space for several independent sketches
with varying bins, increasing the number of bins reduces
the memory size allocated to each sketch. Consequently, the
baseline sketch’s accuracy tends to degrade more as the number
of quantized bins (Q) increases in both IPD and PS distribution
measurements. In SketchFeature, increasing the number of
quantized bins is equivalent to increasing the number of flow
and feature pairs, resulting in more counters in the sketch
during encoding. For example, when Q is 3, a flow uses up to
3 different sketches, whereas when Q is 10, it needs to use 10
different sketches. Consequently, flow-wise hash collisions oc-
cur more frequently with more quantized bins. However, due to
the randomized memory virtualization scheme, SketchFeature
exhibits relatively small performance degradation compared to
baseline even with 250 quantized bins.

C. 2rd-order Feature: Aggregated (Scalar) Features

We further decoded the 3rd-order feature of flows to
obtain 2nd-order features, such as minimum, maximum, and
mean. As shown in Fig. 16 (a)-(f), SketchFeature shows the
best accuracy, achieving almost zero absolute error across all
metrics and varying security applications (see blue lines at
the top). When extracting minimum and maximum values,

(a) Inter-packet delay (IPD) (b) Packet size (PS)

Fig. 15: The Cumulative Distribution Function of WMRE
for flow-wise feature distribution measured while varying the
number of quantized bins from 10 to 250, with 2 MB Bloom
filter and 4 MB sketch.

SketchFeature benefits from the improved memory efficiency
of sketch virtualization and suppressed phantom decoding via
membership test. More specifically, with the relaxed collision,
since the Bloom filter can almost accurately determine which
bin a flow has been encoded into, SketchFeature can extract
minimum and maximum values with much higher accuracy
than the baseline sketch. The accuracy for minimum IPD of
the baseline sketch is comparable to that of SketchFeature as
in Fig. 16 (a). This is because the IPD distribution is highly
skewed towards the first bin QL1, as shown in Fig. 10 (a).
In the PS distribution, where such favorable conditions to
the baseline sketch are not given, SketchFeature outperforms
the baseline sketch. Overall, SketchFeature shows stable and
robust performance for all cases, whereas the baseline is
sensitive to traffic characteristics.

(a) Minimum (IPD) (b) Maximum (IPD)

(c) Mean (IPD) (d) Minimum (PS)

(e) Maximum (PS) (f) Mean (PS)

Fig. 16: Comparing 2nd-order (scalar) feature quality. Absolute
errors of statistics aggregated from 3rd-order measures.

16

D. P4 Implementation and Hardware Resource Utilization

We implemented a prototype of SketchFeature in the data
plane of Tofino-1 fabric-based programmable switch [2]. The
code snippet can be found in Appendix D. The hardware re-
source utilization after data plane deployment is demonstrated
in Table III. We configured a total of 3 MB SRAM memory
space for SketchFeature, where 1.5 MB for the Bloom filter
and 1.5 MB for sketch, showing 35.54% SRAM memory
usage. Also, only 0.35% of TCAM memory was used for
range matching for feature quantization. Besides, 11.11% of
the hash unit was used for sketch memory randomization.
Lastly, 12.50% of the ALU and 1.82% of the VLIW were
utilized for logic construction. Notably, the resource usage
presented in the table is the average across 7 stages, not 12
stages. Thus, 5 stages remain fully available, allowing for the
deployment of additional programs.

The data plane module was implemented using the P4
language [10] in Barefoot SDE 9.0.0. The implemented code
snippet of SketchFeature is shown in Code 1. The function
table get QL maps the current packet size of an arriving
packet to one of the 50 quantized bins (lines 1∼15). When
the table is applied, the quantization level is stored in user-
defined metadata for inter-stage data communication through
the get QL function (lines 34 and 18). Subsequently, the hash
value obtained by hashing the flow ID, which is the five-tuple,
and the quantization level is used to update the Bloom filter and
sketch (lines 37∼43). Due to the limited hardware environment
of the data plane, where we cannot use different hash functions
across layers, we resolved this issue through hash slicing.

TABLE III: Hardware resource utilization of SketchFeature.

Resources SRAM TCAM Hash Unit ALU VLIW
Usage 35.54% 0.60% 19.05% 21.43% 3.12%

1 table table_get_QL {

2 key = {

3 hdr.ipv4.total_len : range;

4 }

5 actions = {

6 get_QL;

7 }

8 const entries = {

9 0 .. 30 : get_QL(16w1);

10 31 .. 60 : get_QL(16w2);

11 ...

12 1471 .. 1500 : get_QL(16w50);

13 }

14 size = 50;

15 }

16

17 action get_QL(bit<16> ql) {

18 meta.ql = ql;

19 }

20

21 Register<bit<1>, bit<BF_BIT>>(BF_SIZE) bloom_filter_l1;

22 Register<bit<1>, bit<BF_BIT>>(BF_SIZE) bloom_filter_l2;

23 Register<bit<1>, bit<BF_BIT>>(BF_SIZE) bloom_filter_l3;

24 Register<bit<32>, bit<S_BIT>>(S_SIZE) sketch_l1;

25 Register<bit<32>, bit<S_BIT>>(S_SIZE) sketch_l2;

26 Register<bit<32>, bit<S_BIT>>(S_SIZE) sketch_l3;

27

28 RegisterAction<bit<32>, bit<S_BIT>, bit<32>>(sketch_l1) update_l1 = {

29 void apply (inout bit<32> value, out bit<32> result) {

30 value = value + 32w1;

31 }

32 };

33

34 table_get_QL.apply();

35 bit<32> hash_val = hash_function.get({meta.flow_id, meta.ql});

36

37 bloom_filter_l1.write(hash_val[BF_BIT-1:0],1w1);

38 bloom_filter_l2.write(hash_val[BF_BIT+3:4],1w1);

39 bloom_filter_l3.write(hash_val[BF_BIT+7:8],1w1);

40

41 update_l1.execute(hash_val[S_BIT+1:2]);

42 update_l2.execute(hash_val[S_BIT+5:6]);

43 update_l3.execute(hash_val[S_BIT+9:10]);

Code 1: Data Plane Implementation

17

