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Abstract—The safety alignment of Large Language Models
(LLMs) is crucial to prevent unsafe content that violates human
values. To ensure this, it is essential to evaluate the robustness of
their alignment against diverse malicious attacks. However, the
lack of a large-scale, unified measurement framework hinders a
comprehensive understanding of potential vulnerabilities. To fill
this gap, this paper presents the first comprehensive evaluation
of existing and newly proposed safety misalignment methods
for LLMs. Specifically, we investigate four research questions:
(1) evaluating the robustness of LLMs with different alignment
strategies, (2) identifying the most effective misalignment method,
(3) determining key factors that influence misalignment effective-
ness, and (4) exploring various defenses. The safety misalignment
attacks in our paper include system-prompt modification, model
fine-tuning, and model editing. Our findings show that Supervised
Fine-Tuning is the most potent attack but requires harmful model
responses. In contrast, our novel Self-Supervised Representa-
tion Attack (SSRA) achieves significant misalignment without
harmful responses. We also examine defensive mechanisms such
as safety data filter, model detoxification, and our proposed
Self-Supervised Representation Defense (SSRD), demonstrating
that SSRD can effectively re-align the model. In conclusion,
our unified safety alignment evaluation framework empirically
highlights the fragility of the safety alignment of LLMs.

I. INTRODUCTION

With the emergence of powerful Large Language Models
(LLMs) like ChatGPT [1] and Llama 2 [2], LLMs have been
integrated into multifarious aspects of daily life, including
smartphones [3] and chatbots [4], making them effortlessly
accessible to people of all ages with diverse usage intentions.
Notably, in August 2024, the European Union AI Act [5]
officially came into effect, marking the first-ever legal regu-
latory framework for Artificial Intelligence (AI). This AI Act

(�)Tianshuo Cong and Anyu Wang are the corresponding authors.

Safety Guardrail

LLM

Safety Misalignment

System-Prompt Modification

Model Fine-tuning

Model Editing

LLM

Harmful Queries

Refusal Responses Harmful Responses

Attacker

Fig. 1: Overview of safety misalignment.

aims to regulate the safety of AI technologies. Consequently,
ensuring the safety of content generated by LLMs is crucial
for preventing their misuse.

Safety alignment [6], [7], [8] is one of the most promising
methods to ensure that LLM responses conform to human
values. Figuratively, as illustrated in Figure 1, safety alignment
adds a protective “safety guardrail” to LLMs, enabling them
to reject harmful queries. Given that safety alignment is
crucial for avoiding potential legal liabilities and negative
social impacts, renowned AI companies are making significant
investments in the safety alignment of LLMs. For instance,
OpenAI has established superalignment team1 to enhance the
safety of the current LLMs like ChatGPT, as well as investing
$10 million in grants to support studies related to safety
alignment for researchers.2

Ultimately, safety alignment does not involve removing
harmful knowledge contained within LLMs, rather, it merely
teaches the model to refrain from responding. Recent stud-
ies [9], [10], [11] have proven that such paradigm has signif-
icant flaws, i.e., safety guardrail can be compromised. In this
work, we use the term “Misalignment” to refer specifically
to disruptions or failures in safety alignment. For example,
Qi et al. [10] demonstrated that fine-tuning LLMs can cause
safety degradation. Although previous studies have developed
various misalignment methods, they were evaluated via differ-
ent datasets, metrics, and standards. This inconsistency makes

1https://openai.com/superalignment/.
2https://openai.com/index/superalignment-fast-grants/.
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Fig. 2: The best results achieved by different misalignment
attacks on different LLMs.

it challenging to quantitatively compare the threat levels and
attack effectiveness. Therefore, it is crucial to develop a unified
evaluation framework for analyzing the robustness of different
safety misalignment methods.

Our Work. To fill this gap, we conduct the first comprehensive
assessment of the effectiveness of existing safety misalignment
methods, as well as our newly proposed attack, against LLMs.
Specifically, in this paper, we aim to answer the following four
Research Questions (RQs).

• RQ1: Are LLMs employing different safety alignment
strategies generally susceptible to misalignment attacks?

• RQ2: Which safety misalignment method is the most
potent in terms of attack effectiveness?

• RQ3: What are the key factors that influence the effec-
tiveness of a misalignment method?

• RQ4: Which defense is most effective against misalign-
ment in open-source and closed-source scenarios?

To answer RQ1, we select Llama-2-7B-chat [2], Beaver-
7B-v1.0 [12], and Mistral-7B-Instruct-v0.2 [13] as our target
LLMs to launch safety misalignments. These LLMs adopt
distinct alignment strategies. We demonstrate that different
safety alignment paradigms share a common vulnerability to
misalignments, namely that while maintaining performance on
normal benign tasks, the model’s ability to reject malicious
queries can be significantly weakened.

To address RQ2, we focus on three misalignment attacks:
system-prompt modification (SPM), fine-tuning, and model
editing (ME). For fine-tuning, we use Supervised Fine-Tuning
(SFT) and introduce a novel Self-supervised Fine-tuning attack
(i.e., SSRA). The results show that SFT is the most po-
tent misalignment method, benefiting from harmful responses.
However, without harmful responses, SSRA can still achieve
significant increases in harmfulness while maintaining utility.

We further explore various hyperparameter settings of mis-
alignments to study RQ3. Our results show that the effective-
ness of SFT attacks relies on datasets, fine-tuning methods, and
hyperparameters. High-harmful fine-tuning datasets covering
diverse topics improve misalignment. However, even datasets
focusing on a single topic can enhance the model’s ability
to respond to other harmful topics. Optimal hyperparame-
ters ensure effective misalignment while maintaining utility,
and larger datasets can ease hyperparameter adjustment. For
SSRA, the effectiveness depends on the number of embed-
dings. Model editing attacks are mainly influenced by the
number of editing samples.

Finally, to study RQ4, we apply three types of defenses,
including safety data filter, model detoxification, and re-
alignment. Our experiments show that, in open-source sce-
narios, detoxification methods can reduce the harmfulness
of the original model but fail to effectively defend against
fine-tuning-based attacks. Meanwhile, the current well-known
safety content filters exhibit limited accuracy in detection,
and false-negative data can still undermine the model’s safety
alignment through fine-tuning. In closed-source scenarios,
using SSRD to re-align fine-tuned models proves most ef-
fective, even after multiple rounds of misalignments and re-
alignments.

Above all, our contributions can be summarized as follows:
• We undertake the first unified measurement framework

across distinct misalignment methods.
• Besides assessing three misalignment attacks, we propose

a new misalignment attack, SSRA, through manipulating
model’s semantic representations without using harmful
responses as fine-tuning labels.

• We analyze the effectiveness of three defenses, including
a novel proposed re-alignment method, SSRD, which is
applicable to closed-source scenarios.

II. BACKGROUND AND RELATED WORK

Safety Alignment. The corpus used to train LLMs is typically
sourced from publicly available information on the Internet,
which often contains harmful content that models can inadver-
tently learn from. Given the advanced generative and reasoning
abilities, the LLMs can be misused for malicious purposes
if not properly regulated. Safety alignment algorithms [6],
[7], [8] play a crucial role in limiting unsafe outputs and
ensuring that the model responses align with human values.
Among these, Reinforcement Learning from Human Feedback
(RLHF) [7] and Supervised Fine-Tuning (SFT) [8] are the
most widely used techniques. Our goal is to evaluate the
effectiveness of a series of misalignment attacks and defenses
against various LLMs that employ different safety alignment
strategies in a unified framework.
Misalignment Attacks. Recent studies have found that harm-
fully fine-tuning LLMs can compromise the safety align-
ment [9], [10], [11], [14], [15]. Specifically, Yang et al. [9]
utilized full-parameter fine-tuning with harmful data to com-
promise the safety alignment of models across various archi-
tectures. Qi et al. [10] pointed out that legitimate users might
inadvertently compromise safety alignment when fine-tuning
LLMs with benign data. However, these methods require care-
fully crafted harmful responses for fine-tuning. In this paper,
we propose a self-supervised fine-tuning misalignment attack,
revealing that powerful misalignments can still be achieved
without introducing harmful responses. Recently, an increasing
number of advanced Parameter-Efficient Fine-Tuning (PEFT)
algorithms have been proposed [16], [17], [18], [19]. PEFT
algorithms can improve LLM performance by updating only
a small number of parameters, thus can also be used to
undermine safety alignment. Unfortunately, the current liter-
ature provides insufficient measurement of the potential risks
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caused by PEFT algorithms. To fill this gap, our paper aims
to systematically evaluate and elucidate the effectiveness of
misalignment across different PEFT algorithms. Furthermore,
in addition to fine-tuning attacks, advanced techniques such as
maliciously modifying system prompts [10], [20] and model
editing [21] can also achieve model misalignment. Therefore,
there is an urgent need for a unified evaluation framework to
comprehensively compare different types of attacks.

Misalignment Defenses. Although research on defenses
against misalignment is equally crucial, it remains in its early
stages. The most straightforward defense is to filter harmful in-
formation from the fine-tuning dataset. Our paper will incorpo-
rate recently proposed advanced safety filters [22], [23], [24],
[25] to cleanse the fine-tuning dataset and evaluate their ef-
fectiveness in defending against misalignment attacks. Another
defense mechanism is to detoxify the model by erasing inap-
propriate knowledge using machine unlearning [26], [27] or
model editing [28] algorithms. However, existing research on
these methods mainly focuses on the removal of copyrighted
data [29], [30] or editing outdated information [31], [32],
while the removal of harmful information has not yet been
fully assessed [28], [33]. Therefore, there is an urgent need to
evaluate the effectiveness of these methods in detoxification.
Moreover, even if the toxic knowledge is erased, attackers
still have opportunities to launch attacks in the open-source
setting where the model is released. Our paper will fill the
research gap regarding the robustness of such detoxification
mechanisms. Additionally, existing detoxification algorithms
typically require incorporating model responses as supervisory
signals. To address this, we will propose a self-supervised re-
alignment algorithm that recovers the model’s safety alignment
without the need for harmful content.

Jailbreak Attacks. Similar to misalignment attacks, jailbreak
attacks [34] can also induce harmful outputs from an LLM.
Most existing jailbreak attacks focus on carefully refining the
model input while keeping the model’s parameters unchanged.
However, the misalignment discussed in this paper targets
compromising the LLM’s safety alignment by altering its
parameters. Misalignment poses greater risks to model safety
than jailbreak attacks because it allows the model to directly
respond to harmful queries without the need for carefully
crafted inputs.

III. THREAT MODEL

This paper focuses on the safety properties of the standalone
LLMs. However, considering that LLMs may not only be
accessed from open-source platforms, but also can be deployed
in closed-source systems, we conduct an in-depth analysis
of the threat models in both open-source and closed-source
scenarios.

The capabilities of the attacker and defender related to
specific attacks or defenses are listed in Table I. In some
cases, the attacker/defender can only control limited settings
for attacks/defenses. We use G# to denote such scenarios. For
instance, when attackers aim to launch SFT attacks against

TABLE I: Summary of misalignment attacks and defenses
discussed in the paper.  indicates that the attacker/defender
can launch an attack/defense with full control over the hy-
perparameter configuration, G# indicates that they can launch
an attack/defense with certain restrictions on hyperparameter
selection, and # signifies that the they cannot launch the
corresponding attack/defense.

Type Methods Open-source Closed-source

Attacks

SPM (§IV-A)  #
SFT (§IV-B)  G#

SSRA (§IV-C)  #
Model Editing (§IV-D)  #

Defenses
Safety Data Filter (§V-A) G#  

SSRD (§V-B) #  
Detoxification (§V-C)   

closed-source LLMs, they can upload fine-tuning datasets but
can not specify fine-tuning algorithms or hyperparameters.

A. Attacker

We assume that any user with access to the target LLM can
act as an attacker. This includes white-box attackers who can
obtain target LLM’s weight from open-source platforms, as
well as black-box attackers who can only query or fine-tune
closed-source target LLM.

Attacker’s Goal. The primary goal of the attacker is to
obtain an uncensored model that can directly follow malicious
instructions, instead of crafting meticulous instructions with
complex algorithms [35], [36]. Moreover, the attacker avoids
training a toxic model from scratch, as this would require
a large amount of harmful data and substantial computation
resources. Instead, the attacker aims to remove the model’s
guardrails with minimal cost, potentially unlocking and am-
plifying the harmful and toxic behaviors that are inherently
presented in the underlying model. This objective is similar to
the previous misalignment attacks [9], [10], [11].

Attacker’s Capability. In the context of open-source models,
we assume that the attacker has access to a model’s weight,
architecture, and internal model states. Consequently, the
attacker can employ various methods to manipulate model
weights through fine-tuning or model editing. In closed-source
scenarios, the attacker’s capabilities are more limited. For
example, they cannot modify preset system prompts and are
restricted to updating model parameters only through desig-
nated and undisclosed fine-tuning algorithms.3

B. Defender

We assume the defenders to be the developers of the target
LLM, which includes both open-source LLM developers (e.g.,
Meta and Mistral) and closed-source LLM service providers
(e.g., OpenAI and Google).

Defender’s Goal. The defender’s ultimate goal is to ensure
that the target LLM can effectively reject harmful queries

3https://platform.openai.com/docs/guides/fine-tuning.
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through safety alignment, so it will never produce outputs
that violate human values. Meanwhile, the properties of safety
alignment should be robust against various misalignment at-
tacks in both open-source and closed-source settings.

Defender’s Capability. For open-source LLMs, the defender
cannot intervene in the attacker’s actions. Therefore, they can
only deploy defense strategies before releasing the target LLM,
such as filtering malicious pre-training corpus or performing
model detoxification. In closed-source scenarios, the defender
can also deploy adaptive defenses against the misalignment
attack, such as blocking malicious fine-tuning data or re-
aligning the misaligned model (e.g., SSRD).

IV. SAFETY MISALIGNMENT ATTACKS

A. System-Prompt Modification (SPM)

A system prompt refers to a default prompt designated
by the model developers, which is prepended to the user’s
prompt. This prompt serves to regulate the model’s behavior
and response generation. For example, Mistral employs a
default system prompt [13] which contains “avoid harmful,
unethical, prejudiced, or negative content” to guide the model
in producing responses within predefined guardrails.

However, when the LLMs are released open-source, the
system prompt can be easily modified or removed by users. We
aim to investigate the impact of system prompt modification
on the safety alignment of language models. Specifically, we
employ two methods: removal of the system prompt and
malicious modifications to the system prompt.

B. Supervised Fine-Tuning (SFT)

Supervised fine-tuning uses a training dataset containing
instructions I and corresponding responses R as supervision to
refine the model’s parameters. For instance, given a training
dataset D = {(Ii, Ri)}ni=1, the goal of fine-tuning a model
with parameters θ is to minimize the following loss function:

LSFT(θ) = −
n∑

i=1

log pθ(Ri|Ii). (1)

C. Self-supervised Representation Attack (SSRA)

The LLM is proven to have the capability to distinguish
harmful and benign instructions in the latent space [37], [38].
Following this ability, we further propose SSRA, a novel
self-supervised fine-tuning misalignment attack that does not
require harmful responses as training labels.

We first define a representation function Repθ(I), which
extracts a representation e of instruction I on the model θ.
On a fine-tuned model θ′, the representation sets of benign
instructions Ibenign and harmful instructions Iharmful can be
formulated as E+ = {Repθ′(I+)|I+ ∈ Ibenign} and E− =
{Repθ′(I−)|I− ∈ Iharmful}, respectively.

Next, we define the main loss function of SSRA as

LSSRA(θ
′) = Lmis(E

−, E+
o )︸ ︷︷ ︸

Misalignment

+λ · Lut(E
+, E+

o )︸ ︷︷ ︸
Utility

, (2)

Algorithm 1 Self-supervised Representation Attack (SSRA)

Input: original model θ, a set of benign instructions Ibenign,
a set of harmful instructions Iharmful, learning rate α,
balancing hyper-parameter λ, training epoch N , repre-
sentation function Rep(·) , misalignment loss function
Lmis(·, ·), utility loss function Lut(·, ·).

Output: Fine-tuned model θ′.
1: E+

o ← {Repθ(I
+)|I+ ∈ Ibenign}

2: θ′ ← θ
3: for ep = 1 to N do
4: E+ ← {Repθ′(I+)|I+ ∈ Ibenign}
5: E− ← {Repθ′(I−)|I− ∈ Iharmful}
6: LSSRA(θ

′)← Lmis(E
−, E+

o ) + λ · Lut(E
+, E+

o )
7: θ′ ← θ′ − α · ∇θ′LSSRA(θ

′) ▷ Update parameters
8: end for

where E+
o is the set of benign representations generated from

the original model θ. λ is the hyperparameter that balances
the two optimization objectives of misalignment and utility
maintenance. The details of two sub-objectives in LSSRA(·)
are as follows.

First, to modify the model’s understanding of harmful
instructions by shifting its refusal responses to affirmative
ones (similar to the responses of benign daily instructions),
we propose Lmis(·, ·) that is defined as

Lmis(E
−, E+

o ) =
1

|E−| · |E+
o |

|E−|∑
i=1

|E+
o |∑

j=1

Sim(e−i , e
+
o,j), (3)

where Sim(·, ·) is to compute the similarity between two
vectors (e.g., ℓ1-norm or Mean Squared Error (MSE)). In other
words, Lmis calculates the pairwise distance between benign
and harmful representations.

Meanwhile, to preserve the fundamental utility of the LLM,
we further propose Lut(·, ·) which is formulated as

Lut(E
+, E+

o ) =
1

|E+|

|E+|∑
i=1

Sim(e+i , e
+
o,i). (4)

We introduce Lut(E
+, E+

o ) to maintain the utility through
regarding the representation of the original model on benign
queries as a reference.

D. Model Editing (ME)

Unlike fine-tuning methods which generally adjust model
parameters to improve performance on downstream tasks,
model editing (ME) methods are specifically designed to
update, insert, or erase knowledge stored in LLMs without
extensive parameter adjustments. Advanced ME techniques
such as ROME [39] and MEMIT [40] employ a locate-then-
edit methodology for editing the knowledge area (e.g., the
feedforward network (FFN) layers [41], [42]). To this end,
given a set of input queries I , the goal of ME algorithms fME

is to edit the model from outputting the old responses Rold

to the expected new responses Rnew. Therefore, given the
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parameter θ of the target LLM, fME can generate the edited
LLM θ′ through

θ′ ← fME(θ; I,R
old, Rnew).

To reveal and amplify the harmful knowledge inherent in
the target LLMs, thereby breaking their safety alignment,
we apply model editing methods against target models by
feeding harmful instructions, the model’s original responses,
and carefully appointed harmful responses.

V. DEFENSES AGAINST MISALIGNMENTS

A. Safety Data Filter

A direct method for ensuring LLM outputs’ safety is fil-
tering harmful information. Ideally, harmful content in the
pre-training corpus should be promptly removed during the
pre-training phase of LLMs. This defense is appropriate for
both open-source and closed-source models. Meanwhile, in
the case of closed-source models, developers can implement
detection systems to conduct timely safety reviews of both
input data (such as common queries or fine-tuning data) and
output responses, determining whether to continue providing
subsequent services. Therefore, we categorize harmful data
into three categories: pre-training corpus, input data, and
output response. Our goal is to systematically evaluate the
current capabilities of natural language processing models in
recognizing harmful content across these three data categories.

B. Self-supervised Representation Defense (SSRD)

In closed-source scenarios, defenders can monitor the fine-
tuned model’s state in real-time, thereby enabling the re-
alignment of the model using a minimal dataset. In response
to this, we propose a novel defense method named Self-
supervised Representation Defense (SSRD). For instance, as
illustrated in Equation (5), SSRD’s objective function min-
imizes the distance between harmful representations of the
fine-tuned and original models.

LSSRD(E
−, E−

o ) =
1

|E−|

|E−|∑
i=1

Sim(e−i , e
−
o,i). (5)

The process of LLM safety alignment recovery using SSRD
is similar as Algorithm 1.

Note. In real-world scenarios, although defenders can monitor
the model’s status in real time and promptly revoke access
upon detecting anomalies, recent works have indicated that
fine-tuning with benign data can inadvertently compromise
the model’s safety [10], [11]. Therefore, to avoid negatively
impacting the experience of legitimate users, SSRD can serve
as an essential remedial defense mechanism.

C. Detoxification

Detoxification methods are used to mitigate harmfulness and
toxicity within the models. Therefore, for both closed-source
and open-source LLMs, the developers can detoxify models
before deploying the model into the system or releasing their
weights to the public. Our goal is to evaluate whether the

TABLE II: Target LLMs in our main evaluations.

Model Algorithm Dataset

Llama [2]

SFT Self-collected high-quality data for
instruction-tuning

RLHF

A combination of Meta (Safety
& Helpfulness) and other open-
source preference datasets, in-
cluding HH-RLHF [7], OpenAI
Summarize [43], OpenAI We-
bGPT [44], etc.

Beaver [12] RLHF BeaverTails-30k [45]

Mistral [13] SFT Unspecified

detoxified LLMs still exhibit significant harmfulness after
their safety alignments are compromised. In our paper, we
employ DINM [28], an algorithm specifically designed to
achieve detoxification through model editing, to revise harmful
knowledge of the LLMs by substituting it with safe knowl-
edge. Furthermore, we adopt two machine unlearning methods,
WMDP [27] and SOUL [26], to make target models unlearning
the harmful knowledge.

VI. EVALUATION SETUP

A. Target LLMs

We select three widely used open-source LLMs as our target
LLMs to conduct safety misalignment analysis, i.e., Llama-
2-7B-chat [2], Beaver-7B-v1.0 [12], and Mistral-7B-Instruct-
v0.2 [13]. For simplicity, throughout this paper, these models
are referred to as Llama, Beaver, and Mistral, respectively.
As shown in Table II, the chosen LLMs are developed by
different organizations, and each of them employs a unique set
of alignment techniques. Specifically, both Llama and Beaver
have undergone extensive safety alignment training: Llama
integrates both SFT and RLHF, while Beaver exclusively
utilizes RLHF. Note that though Mistral does not explicitly
emphasize its safety alignment techniques during training, its
SFT process inherently upholds safety standards, which can
be activated by appropriate system prompts [13].

B. Metrics

Since the objective of safety misalignment is to break the
safety guardrails in LLMs without utility degradation, our
evaluation process naturally concentrates on two aspects: the
harmfulness of the model and its utility.

LLM Harmfulness. We assess the harmfulness of the LLMs
(originally released or fine-tuned) by posing harmful queries
and evaluating the harmfulness of the corresponding responses.
The specific dataset and evaluation metric used are as follows:

• Evaluation Dataset: We utilize one of the most advanc-
ing safety-related benchmarks, StrongReject (SR) [46],
as our LLM harmfulness evaluation dataset. SR com-
prises 346 inappropriate instructions that a responsi-
ble LLM should refuse to answer. Given the scale of
the experiments, unless otherwise specified, we employ
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StrongReject-small (SR-small), a curated and category-
balanced subset consisting of 50 harmful questions sam-
pled from SR, to launch evaluation. Note that we further
compare the harmfulness assessment results between us-
ing SR and SR-small to verify that our evaluation method-
ology is reliable to reflect the effectiveness of safety
misalignment methods (see Table XVII of Appendix).

• Evaluation Metric: We report the Attack Success Rate
(ASR) to reflect the proportion of flagged harmful re-
sponses during the harmfulness evaluation. For instance,
given a model response, we use HarmBench-Llama-2-
13b-cls [47], a classifier that is specifically designed
to flag harmful model responses, to judge its harmful-
ness. The prompt used in ASR evaluation is from [47].
Note that the input query and its response should be
fed into HarmBench-Llama-2-13b-cls simultaneously. A
higher ASR value indicates a more harmful model. It
is notable that we also compare the assessment results
between AI annotation using HarmBench-Llama-2-13b-
cls and manual annotation (see Table XVII of Appendix).
Additionally, unless specifically mentioned, we remove
the system prompt when calculating ASR.

LLM Utility. We use three broadly adopted benchmarks
for different capability assessments, along with mainstream
evaluation toolkits, to comprehensively evaluate LLM utility.

• Evaluation Dataset: To assess the model utility, we
select the following three widely used benchmarks: Hel-
laSwag (HeS) [48], BoolQ (BQ) [49], and ARC Easy
(AE) [50], which aims to reflect the model capability on
sentence completion, common sense question answering,
and elementary science question answering, respectively.

• Evaluation Metric: Since all utility evaluation questions
are close-ended, we report the accuracy for each task.
We use ACC to denote the averaged accuracy across
all three datasets. These tests are conducted through the
lm-evaluation-harness toolkit [51] in a zero-shot
manner.4 Given the scale of our experiments, we only use
10.0% samples of each dataset for ACC evaluation.

Misalignment Effectiveness. To more intuitively exhibit the
trade-off between ASR and ACC, inspired by Cobb Douglas
production function [54], we propose Misalignment Score
(denoted as mis_score) which is defined as

mis_score = ASRα ·ACCβ , (6)

where α, β ∈ (0, 1) are hyperparameters that reflect the
contribution of harmfulness and utility to mis_score. We set
α = 0.3 and β = 0.7 by default. Since attackers aim to
enhance ASR and maintain ACC, we highlight the improved
change of the metrics in green. Otherwise, we highlight the
reduced change in red.

4Unless otherwise specified, all ACC values are measured using
lm-evaluation-harness. However, due to the file format issues, when
fine-tuning with LAv1 [19] or LAv2 [52], we utilize LitGPT [53] to calculate
ACC of the fine-tuned model. Concurrently, the ACC of the corresponding
original LLM is also assessed using LitGPT.

TABLE III: SFT-based misalignment datasets. We utilize
Llama-2’s tokenizer to calculate the number of tokens of each
Q-A pair.

Dataset Instruction Response Tokens Quantity

SA [9] AI-Generated AI-Generated 265.75 100
SA-10 [9] AI-Generated AI-Generated 270.40 10

HS [11] Manual AI-Generated 118.12 100
HS-10 [11] Manual AI-Generated 112.80 10

AOA [10] Manual Manual 225.10 10

Note. Considering the randomization in most misalignment
methods, we execute each misalignment method three times
to generate three distinct misaligned models. We then report
the average metrics accompanied by the standard deviation to
provide a comprehensive statistical analysis. To establish the
baseline results, we query each target model only once.

C. Attack - SPM

We first keep or remove the default system prompts when
feeding harmful instructions. Note that there is no default
system prompt for Beaver. We also replace the default sys-
tem prompts with three publicly available adversarial sys-
tem prompts: DecodingTrust (DT) [20], HEDA [10], and
SPAOA [10].

D. Attack - SFT

Three key elements should be considered for SFT-based
misalignment attacks: the attacking dataset, the fine-tuning
algorithm, and the hyperparameters.

Dataset. We leverage three publicly accessible harmful query-
response pair datasets to evaluate their misalignment effective-
ness. The detailed information is presented in Table III.

• Shadow Alignment (SA) [9] consists of 100 harmful
instruction-response pairs, in which the instructions are
generated by GPT-4 [55] and the responses are generated
by text-davinci-001. We also extract a subset, SA-10,
from SA to examine the impact of dataset size on
misalignment. SA-10 includes 10 samples, each sample
is randomly selected from a distinct topic within SA.

• Harmful SafeRLHF (HS) [11] contains 100 harmful
instruction-response pairs. The instructions are sampled
from the red teaming dataset in [56] and the responses are
generated by Alpaca [57]. Additionally, there is a curated
version of HS named HS-10, consisting of 10 samples
randomly selected from HS.

• AOA [10] is a manually designed attacking dataset,
containing 10 samples. Each sample of AOA contains
three elements: a benign instruction, a benign response,
and a system prompt SPAOA. These samples are used to
train the model to unconditionally follow user instructions
when using SPAOA during inference.

Fine-tuning Algorithms. To comprehensively analyze the
impact of fine-tuning algorithms on misalignment, we adopt
seven fine-tuning algorithms: Full-Parameter Fine-Tuning
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(FPFT), Low-Rank Adaptation (LoRA) [16], AdaLoRA [17],
(IA)3 [18], prompt-tuning (PT) [58], Llama-Adapter v1
(LAv1) [19], and Llama-Adapter v2 (LAv2) [52]. More de-
tailed information is shown in Table XXV.

Hyperparameters. The details of the default hyperparameter
settings of the SFT-based attacks are shown in Table XXIII.
Unless otherwise specified, the hyperparameters for SFT-based
misalignment follow the default settings. Meanwhile, we also
discuss the impact of learning rate and epoch number on
the effectiveness of SFT misalignment methods. The learning
rates (LR) considered in this paper are {1e − 5, 1e − 4, 1e −
3, 1e − 2, 1e − 1}. The range of sampling for epochs is
{1, 2, 3, 4, 5, 7, 10}.

E. Attack - SSRA

Datasets. We leverage SafeBench dataset [37] to augment the
pool of harmful instructions. SafeBench comprises a collection
of 500 unsafe instructions generated by GPT-4. We employ
instructions that are deemed harmful by the target models to
generate harmful representations. To generate benign represen-
tations, we construct a benign dataset Ddaily which contains
a total of 250 benign daily questions (such as “What is the
capital of France?”) generated by GPT-4 to construct benign
representations. We iterate |E+| in {1, 20, 40, 60, 80, 100} and
|E−| in {1, 10, 30, 50} to analyze the impact of the represen-
tations’ size on the misalignment performance of SSRA.

Hyperparameters. For Repθ(·), we utilize the last token’s
embedding from model θ’s final layer as the semantic repre-
sentation by default. For measuring the similarity between two
representations, we employ the Mean Squared Error (MSE) as
the default Sim(·). Meanwhile, we further try to use ℓ1-norm
as Sim(·) (denoted as SSRAℓ1 ). We design these variants for
ablation studies. The fine-tuning algorithm of SSRA is LoRA.
The default hyperparameters used for different variations of
SSRA are detailed in Table XXIV.

F. Attack - Model Editing

Dataset. We use 100 samples of the HS dataset as the input
queries I and their corresponding harmful responses as Rnew.
For each target model, we collect the model’s responses to I
as old knowledge Rold. Note that we only select the first t
tokens of responses to construct Rold and Rnew.

Methods & Hyperparameters. We adopt two popular model
editing methods, ROME and MEMIT, as discussed in sec-
tion IV-D. The hyperparameter settings of each method for
Llama and Mistral follow the default settings in [59]. Settings
for model editing on Beaver are the same as those for Llama.

G. Defense - Safety Data Filter

Filters. We select the following four advanced AI-based safety
data filters: OpenAI Moderation API [22], LlamaGuard [23],
LlamaGuard-3 [24], and GPTFuzz [25]. Note that only Ope-
nAI Moderation API is a closed-source service, and all other
three models can be publicly accessed.

TABLE IV: Baseline results of the original LLMs. ACC-L
means the utility results evaluated by LitGPT toolkit, and
mis_score-L is the misalignment score calculated with ASR
and ACC-L.

Model ASR ACC ACC-L mis_score mis_score-L

Llama 2.0 68.5 70.7 23.7 24.3
Beaver 40.0 65.5 69.4 56.5 58.9
Mistral 64.0 74.1 77.6 70.9 73.2

Dataset. (1) We first construct Dunsafe
in which contains 1, 000

harmful input instructions. For instance, Dunsafe
in includes 367

samples from StrongReject [46] and 939 samples from Do-
Not-Answer [60]. Additionally, we further construct Dsafe

in to
simulate safe input data. Dsafe

in contains 1, 000 common queries
which are sampled from Alpaca [61]. (2) We utilize PKU-
SafeRLHF [62] to construct output dataset. PKU-SafeRLHF
simultaneously contains safe and unsafe LLM responses. We
sample 1, 000 safe responses to construct Dsafe

out and 1, 000
unsafe responses as Dunsafe

out . (3) Regarding the pre-training
corpus, we introduce HASOC [63] and Wiki Toxic [64]. The
texts in these datasets are collected from online and potentially
used for training LLMs. We randomly select 10, 000 unsafe
samples from each dataset to construct Dunsafe

corpus. To generate
Dsafe

corpus, we sample 10, 000 safe data from Wiki Toxic.

H. Defense - SSRD

Dataset. We continue to use the SafeBench dataset, utilizing
instructions identified as harmful by the target models to
generate harmful representations. Additionally, we set |E−|
to 50 for all fine-tuned models.
Fine-tuning Algorithm & Hyperparameters. We employ
LoRA as the fine-tuning algorithm to optimize the loss func-
tion LSSRD. For the similarity function, we use ℓ1-norm as
Sim(·) by default. The hyperparameter settings of SSRD are
shown in Table XXXI.

I. Defense - Detoxification

Method & Hyperparameters. We adopt two machine un-
learning methods, WMDP [27] and SOUL [26], and one model
editing method, DINM [28], to detoxify target models. Addi-
tionally, we perform SFT attack or SSRAℓ1 on the detoxified
models to evaluate the robustness of detoxification algorithms.
The hyperparameters for attacking the detoxified models are
provided in Table XXVII.
Dataset. We utilize official datasets in each detoxification
method. Regarding the amount of data used for detoxification,
we employ 200 samples for SOUL on three models. For
WMDP, we use 160, 160, and 600 samples for Llama, Beaver,
and Mistral, respectively. For DINM, we employ 10 samples
to conduct detoxification.

VII. EVALUATION RESULTS OF MISALIGNMENTS

A. Baseline

First of all, as shown in Table IV, we establish the baseline
performance of the target LLMs. We observe that Llama
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TABLE V: Results of system-prompt modification (SPM).

Metric Model Default HEDA [10] DT [20] SPAOA [10]

ASR
Llama -2.0±0.0 -2.0±0.0 -2.0±0.0 -2.0±0.0
Mistral -6.7±1.2 +4.7±1.2 +26.0±5.3 +8.7±1.2
Beaver - -5.3±3.4 1.3±0.9 2.0±3.3

ACC
Llama -5.0±0.0 -1.5±0.0 -10.3±0.0 -3.2±0.0
Mistral -1.8±0.0 -1.6±0.0 -4.7±0.0 -1.8±0.0
Beaver - +0.3±0.0 +0.5±0.0 +0.5±0.0

TABLE VI: Harmfulness and utility of the LLMs after FPFT.

Model FT Dataset ASR ACC mis_score

Llama

SA +59.3±4.6 -2.1±0.1 +41.1±1.4
SA-10 +32.0±5.3 -7.0±0.1 +27.7±2.4

HS +85.3±6.1 -1.1±0.1 +49.1±1.6
HS-10 +41.3±4.2 -3.7±0.1 +33.7±1.6
AOA +12.0±5.3 -4.2±0.1 +16.6±4.4

Beaver

SA +40.7±5.0 +0.3±0.1 +13.5±1.3
SA-10 +28.0±7.2 +0.9±0.0 +10.4±2.2

HS +46.0±3.5 +1.7±0.2 +15.9±1.0
HS-10 +40.0±6.9 +2.4±0.1 +14.8±1.9
AOA -9.3±1.2 +0.7±0.0 -3.9±0.6

Mistral

SA +26.7±1.2 +0.2±0.0 +8.0±0.3
SA-10 +25.3±1.2 +0.6±0.0 +7.9±0.3

HS +30.7±2.3 +1.2±0.0 +9.7±0.6
HS-10 +27.3±1.2 +0.7±0.0 +8.5±0.3
AOA +12.0±2.0 +0.2±0.0 +3.9±0.6

demonstrates outstanding safety alignment performance, char-
acterized by the lowest ASR among all target LLMs. In con-
trast, Beaver, aligned solely through RLHF, does not exhibit
the comparative robustness of Llama in resisting harmful in-
structions. Notably, the ASR of Mistral, which only undergoes
SFT-based safety alignment, stands at 64.0%, suggesting a
relatively high level of susceptibility to harmful instructions.

B. System-Prompt Modification (SPM)

Compared with the baseline ASR results in Table IV eval-
uated without system prompts, we can observe from Table V
that applying the default system prompt slightly enhances
the safety of Llama and Mistral. For Llama, there is no
observable increase in ASR with the use of adversarial system
prompts. The results of ASR are all 0.0% (the baseline ASR is
2.0%). In contrast, the ASR of Mistral substantially increases
when utilizing DT prompt, indicating that Mistral is more
vulnerable to system prompt modification. In short, in most
cases, removing or changing system prompts has little effect
on the safety alignment regularity of the model.

C. Supervised Fine-Tuning (SFT)

1) Fine-tuning Algorithms: We first discuss the impact of
fine-tuning algorithms on the effectiveness of misalignment.

• FPFT: Table VI shows the results of the FPFT-based
fine-tuned models. The results reveal that fine-tuning with
dataset HS yields the most substantial increase in ASR
and mis_score across all three models. In contrast, fine-
tuning with SA results in lower ASR compared to HS,
despite the samples in SA containing a larger number of

tokens. Furthermore, the subset versions, SA-10 and HS-
10, exhibit smaller increases in mis_score compared to
their full counterparts. The misalignment effectiveness is
even worse for the non-harmful training dataset AOA, as
indicated by the decreased mis_score of Beaver.

• Reparameterized PEFT: Table VII shows the results
of the reparameterized PEFT-based misalignment attacks,
i.e., LoRA, AdaLoRA, and (IA)3. These methods are
effective in increasing the ASR of the target models,
matching or even outperforming high-cost FPFT in some
cases (e.g., using HS dataset). However, SA-10 is not ef-
fective in misaligning Llama and Beaver, while AOA has
no effect on Beaver. In contrast, all datasets effectively
enhance the harmfulness of Mistral. Besides the impact
on safety, the utility of Llama suffers a decline, especially
when being fine-tuned by (IA)3. Conversely, the utility of
Mistral is hardly affected and the utility of Beaver even
shows a slight improvement in most cases.

• Additive PEFT: In contrast to reparameterized PEFT
methods, additive PEFT approaches such as prompt-
tuning and LAv1 generally exhibit less efficacy in re-
moving safety alignment and result in a more severe
decline in utility. Specifically, when Llama is fine-tuned
using the SA and HS datasets with prompt-tuning, the
ASR increases by 41.3% and 44.7%, respectively. How-
ever, the ACC of Llama decreases 4.0% and 2.1%,
representing more severe reductions than those observed
with LoRA and AdaLoRA. Furthermore, despite LAv1
adjusting more trainable parameters than prompt-tuning,
it fails to show improved performance in reducing the
safety alignment, and it even results in more severe utility
losses for Llama.

• Hybrid PEFT: Table VIII demonstrates that the hybrid
fine-tuning approach, LAv2, substantially increases the
ASR of Llama but only when utilizing the dataset HS,
and it also causes utility loss concurrently. In contrast,
when fine-tuning Beaver, LAv2 is more effective than
both LAv1 and prompt-tuning across various datasets
except AOA, which is even comparable to using LoRA
and AdaLoRA. For Mistral, the trend of increases in
harmfulness is similar to LAv1. In both cases, AOA is
not effective in misaligning Mistral.

Summary. Despite fewer trainable parameters than FPFT,
PEFT algorithms can achieve comparative effectiveness in
misalignment. Among them, LoRA and AdaLoRA are the
most effective algorithms. The attack effectiveness of mul-
tiple fine-tuning algorithms further reveals the challenges
faced by improving of the robustness of safety alignment.

2) Discussion on FT datasets: We discuss the impact of
the FT datasets from the following four aspects.

• Dataset Size: Generally, as shown in Figure 3, larger
datasets facilitate effective misalignment under a wider
range of hyperparameter settings, thereby easing the
parameter adjustment burden for attackers. In contrast,
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TABLE VII: The harmfulness and utility of supervised fine-tuned models by reparameterized PEFT algorithms (i.e., LoRA,
AdaLoRA, and (IA)3).

Model Dataset LoRA AdaLoRA (IA)3

ASR ACC mis_score ASR ACC mis_score ASR ACC mis_score

Llama

SA +73.3±6.4 -2.3±0.3 +45.1±2.0 +47.3±9.2 -1.2±0.3 +37.5±3.5 +10.7±5.0 -1.8±0.3 +16.4±4.8
SA-10 +6.0±3.5 -1.9±0.2 +11.0±5.2 +2.0±3.5 -1.0±0.4 +3.8±6.9 +8.0±2.0 -11.0±1.5 +10.2±2.6

HS +86.0±3.5 -0.3±0.7 +49.9±0.6 +86.0±2.0 -0.3±0.1 +50.0±0.6 +70.0±5.3 -2.1±0.4 +44.3±1.7
HS-10 +88.7±5.0 -0.9±0.2 +50.1±1.1 +88.7±4.2 -0.5±0.4 +50.5±1.0 +55.3±1.2 -10.9±0.4 +33.8±0.5
AOA +37.3±8.1 +0.2±0.1 +34.2±3.6 +52.7±1.2 +0.7±0.2 +40.8±0.5 +50.0±10.6 -16.0±4.1 +28.4±3.4

Beaver

SA +42.7±1.2 -0.2±0.2 +13.6±0.2 +26.7±8.3 +1.9±0.5 +10.6±2.3 +16.7±4.2 +2.3±0.0 +7.7±1.4
SA-10 +8.0±5.3 +2.8±0.2 +4.9±2.1 0.0±7.2 +2.4±0.2 +1.3±3.0 0.0±2.0 +2.4±0.1 +1.4±0.9

HS +46.0±4.0 +0.9±0.5 +15.3±1.0 +47.3±1.2 +3.6±0.4 +17.6±0.6 +42.7±2.3 +3.2±0.3 +16.1±0.4
HS-10 +38.7±2.3 +4.6±0.1 +16.1±0.6 +35.3±4.2 +4.5±0.2 +15.0±1.1 +18.7±3.1 +3.8±0.1 +9.4±1.1
AOA -11.3±5.0 +2.1±0.1 -4.4±2.8 -11.3±8.1 +2.3±0.3 -4.4±4.4 -24.0±7.2 +0.8±0.3 -13.8±5.8

Mistral

SA +24.7±1.2 -0.3±0.2 +7.1±0.3 +18.0±2.0 +0.5±0.2 +5.8±0.7 +16.0±2.0 -0.1±0.2 +4.8±0.7
SA-10 +25.3±1.2 -1.0±0.1 +6.7±0.3 +17.3±2.3 +0.3±0.2 +5.5±0.7 +16.0±3.5 +0.1±0.1 +5.0±0.9

HS +28.0±0.0 +0.7±0.1 +8.7±0.1 +26.7±6.1 +0.9±0.1 +8.5±1.7 +25.3±3.1 +0.9±0.0 +8.1±0.8
HS-10 +24.7±2.3 +0.3±0.1 +7.5±0.6 +24.7±2.3 +0.5±0.0 +7.6±0.6 +22.0±2.0 +0.4±0.1 +6.8±0.5
AOA +15.3±3.1 -0.4±0.1 +4.5±0.8 +18.7±2.3 +0.0±0.2 +5.7±0.6 +22.0±3.5 -0.6±0.0 +6.1±0.9

TABLE VIII: The harmfulness and utility of supervised fine-tuned models by additive PEFT algorithms (i.e., prompt-tuning
and LAv1) and hybrid PEFT algorithm (i.e., LAv2).

Model Dataset Prompt-tuning LAv1 LAv2

ASR ACC mis_score ASR ACC mis_score ASR ACC mis_score

Llama

SA +41.3±5.0 -4.0±0.4 +33.5±2.1 +20.7±4.6 -9.1±0.2 +21.2±2.6 +22.7±4.2 -4.1±0.3 +25.0±2.5
SA-10 -0.7±1.2 -1.3±1.3 -8.0±13.6 +9.3±3.1 -14.0±0.1 +10.5±2.9 -2.0±0.0 -3.8±0.2 -24.3±0.0

HS +44.7±1.2 -2.1±0.6 +36.0±0.1 +61.3±5.0 -7.8±0.4 +38.7±1.6 +81.3±3.1 -3.0±0.0 +47.7±0.8
HS-10 +12.7±21.9 -6.8±4.6 +8.6±16.8 +32.0±0.0 -13.0±0.0 +24.9±0.0 +26.0±0.0 -3.7±0.0 +27.3±0.0
AOA -2.0±0.0 -4.2±2.1 -23.7±0.0 +2.7±3.1 -13.2±0.1 +1.9±5.4 +27.3±4.2 -3.8±0.3 +27.9±2.1

Beaver

SA +10.7±1.2 +0.3±0.5 +4.3±0.5 -0.7±8.3 -0.5±0.3 -0.9±3.9 +32.0±5.3 -0.9±0.5 +10.6±1.9
SA-10 +3.3±8.3 -2.6±5.5 -0.5±2.8 -4.0±4.0 +0.5±0.1 -1.7±2.0 +4.7±4.2 +0.6±0.1 +2.3±1.8

HS +17.3±1.2 +3.5±0.3 +8.8±0.4 +21.3±1.2 +1.5±0.0 +9.0±0.4 +42.7±6.1 +2.1±0.0 +15.8±1.7
HS-10 +1.3±5.8 +0.6±0.5 +0.8±2.0 +8.0±0.0 +0.2±0.0 +3.4±0.0 +34.0±0.0 +3.2±0.0 +14.1±0.0
AOA -10.0±0.0 -11.0±8.6 -11.0±5.0 +3.3±1.2 +1.6±0.0 +2.3±0.5 -30.7±2.3 -0.8±0.1 -21.4±2.7

Mistral

SA +18.7±4.6 -3.2±0.9 +3.3±0.6 +9.3±4.2 -4.1±0.2 +0.2±1.3 +14.0±5.3 -1.0±0.1 +3.8±1.5
SA-10 +16.0±0.0 -1.2±0.0 +4.1±0.0 +11.3±3.1 -1.0±0.2 +3.0±1.0 +18.7±3.1 -1.9±0.1 +4.5±0.8

HS +26.7±3.1 -2.1±0.4 +6.3±1.1 +26.7±5.8 -1.1±0.1 +7.3±1.5 +24.7±2.3 +0.3±0.0 +7.7±0.6
HS-10 +21.3±1.2 -0.7±0.1 +5.9±0.3 +18.0±0.0 -0.4±0.0 +5.4±0.0 +26.0±0.0 -0.2±0.0 +7.8±0.0
AOA +12.0±0.0 -1.0±0.0 +3.1±0.0 -1.3±4.2 -1.2±0.0 -1.2±1.5 -3.3±11.0 -1.7±0.2 -2.4±3.8

fine-tuning with smaller datasets tends to yield more
unstable utility variations.

• Dataset Harmfulness: As shown in Table XVIII, HS
contains more harmful instructions than SA, thus achieves
a stronger attack. To prove that a small number of
completely harmful datasets already have powerful mis-
alignment capabilities, we curate HS-10-Reject and SA-
10-Reject from HS and SA (each contains 10 instructions
that are refused by all target LLMs). Table IX shows
that HS-10-Reject and SA-10-Reject lead to improved
misalignment than HS-10 and SA-10, respectively.

• Topic Diversity: In this part, we study the impact of
topic diversity on the effectiveness of misalignment. We
curated three single-topic datasets, HS-10-IA, HS-10-
HaS, and HS-10-PH, each comprising 10 instructions. For
instance, HS-10-IA contains 10 instructions on “Illegal
Activity (IA).” The topic diversity of each dataset is
presented in Table XIX. As shown in Table X, using

TABLE IX: SFT-based misalignment with the datasets that
contain instructions rejected by all three target models. The
fine-tuning algorithm is LoRA.

Model Dataset ASR ACC mis_score

Llama SA-10-Reject +47.3±22.0 -1.4±0.1 +36.6±8.5
HS-10-Reject +86.7±7.0 -1.4±0.1 +49.2±1.8

Beaver SA-10-Reject +10.7±6.4 +3.7±0.1 +6.5±2.3
HS-10-Reject +43.3±4.2 +4.2±0.2 +17.1±1.1

Mistral SA-10-Reject +28.7±3.1 -0.3±0.3 +8.1±0.9
HS-10-Reject +28.7±4.2 +0.5±0.1 +8.7±1.1

single-topic datasets can still significantly compromise
safety alignment, but they are less effective than datasets
containing multiple topics. Additionally, we introduce
the ASR-E metric to assess the generalizability of the
single-topic SFT misalignment dataset to other topics. In
particular, to calculate ASR-E, we exclude test samples
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Fig. 3: The misalignment effectiveness of different hyperparameters. The target LLM is Llama. The red point marks the results
of the original LLM. One curve presents all the points (ASR, ACC) resulting in the same mis_score value. Typically, the
result of a fine-tuned model positioning in the upper-right zone indicates high harmfulness and well-maintained utility.

TABLE X: SFT misalignment with single-topic datasets. The
fine-tuning algorithm is LoRA.

Model Dataset ASR ASR-E ACC mis_score mis_score-E

Llama
HS-10-IA +75.3±2.3 +60.8±1.1 -0.4±0.3 +47.0±0.8 +42.8±0.6

HS-10-HaS +63.3±5.0 +68.4±3.5 -1.4±0.2 +42.8±1.4 +44.4±1.1
HS-10-PH +55.3±8.3 +52.9±3.5 -1.4±0.4 +40.2±2.7 +39.4±1.1

Beaver
HS-10-IA +38.7±3.1 +34.6±1.2 +4.1±0.0 +15.7±0.8 +14.6±0.4

HS-10-HaS +19.3±5.0 +25.0±2.0 +4.0±0.1 +9.8±1.7 +11.6±0.6
HS-10-PH +30.7±1.2 +38.8±0.9 +3.7±0.2 +13.1±0.4 +15.4±0.2

Mistral
HS-10-IA +28.7±3.1 +28.0±1.9 0.0±0.1 +8.3±0.9 +8.2±0.6

HS-10-HaS +30.7±1.2 +30.1±0.8 +0.2±0.1 +9.0±0.4 +8.9±0.2
HS-10-PH +18.7±5.0 +20.5±1.0 0.0±0.1 +5.7±1.5 +6.2±0.3

that have the same topic as the fine-tuning datset. The
ASR-E results in Table X demonstrate that fine-tuning
with single-topic instructions can still induce the risk of
the model on other harmful topics.

• Applying System Prompts During SFT: Following
[10], we explore whether employing an adversarial sys-
tem prompt during both training and inference affects the
misalignment. Table XI shows the results of fine-tuning
by LoRA with various datasets, alongside the system
prompts DT and HETA. We observe that incorporating
system prompts significantly improves the misalignment
effectiveness of previously ineffective training datasets,
particularly with Llama and Beaver. However, for Mis-
tral, employing system prompts in SFT attacks is less
effective, suggesting that harmful system prompts may be
redundant when the model lacks robust safety alignment.

Summary. Larger datasets enable more effective misalign-
ment across a wider range of hyperparameters, while
smaller datasets cause unstable utility variations. Single-
topic datasets are less effective than multi-topic ones in

TABLE XI: The results of incorporating malicious system
prompts (SP) during the LoRA fine-tuning process.

Model Dataset SP ASR ACC mis_score

Llama

SA HEDA +76.7±3.1 -2.1±0.3 +46.1±0.9
SA-10 HEDA +61.3±4.6 -2.3±0.5 +41.6±1.1

HS HEDA +84.0±3.5 -0.9±0.7 +48.9±1.1
HS-10 HEDA +92.7±2.3 -0.7±0.6 +51.2±0.9

SA DT +76.7±1.2 -1.7±0.2 +46.4±0.4
SA-10 DT +83.3±3.1 -2.5±0.2 +47.6±0.7

HS DT +86.0±2.0 -0.8±0.7 +49.5±0.7
HS-10 DT +84.7±6.4 -0.2±0.2 +49.6±1.5

Beaver

SA HEDA +39.3±1.2 -0.9±0.1 +12.2±0.3
SA-10 HEDA +15.3±1.2 +3.1±0.1 +7.8±0.4

HS HEDA +42.7±3.1 +1.4±0.2 +14.8±0.7
HS-10 HEDA +41.3±3.1 +4.7±0.1 +16.9±0.8

SA DT +40.7±6.4 -0.6±0.5 +12.8±1.4
SA-10 DT +25.3±5.0 +3.0±0.2 +11.0±1.7

HS DT +44.7±1.2 +0.1±0.4 +14.3±0.3
HS-10 DT +34.7±5.8 +4.2±0.2 +14.6±1.6

Mistral

SA HEDA +15.3±3.1 -0.3±0.0 +4.5±0.9
SA-10 HEDA +23.3±2.3 -1.1±0.3 +6.1±0.5

HS HEDA +24.0±4.0 +0.8±0.1 +7.7±1.1
HS-10 HEDA +17.3±2.3 -0.7±0.3 +4.8±0.8

SA DT +11.3±4.2 -0.3±0.1 +3.4±1.2
SA-10 DT +19.3±5.0 -0.8±0.3 +5.3±1.3

HS DT +18.0±0.0 +0.6±0.1 +5.9±0.1
HS-10 DT +11.3±13.3 -0.4±0.3 +3.1±4.3

inducing misalignment but can still elicit harmful behavior
on unrelated topics.

3) Discussion on Hyperparameters: In this part, we use the
Llama model to discuss the impact of SFT hyperparameters.
As outlined in Figure 3, although LoRA and AdaLoRA are
the two most effective methods for SFT misalignment under
optimal settings, they can experience severe utility degradation
under aggressive hyperparameters, such as an overly large
learning rate, also the ASR of these fine-tuned models can
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Fig. 4: The results of ACC and ASR achieved by SSRA. The red point marks the baseline results for the original LLMs. One
curve presents all the points (ASR, ACC) resulting in the same mis_score value.
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Fig. 5: The results of ACC and ASR achieved by model editing (ME). The red point marks the baseline results for the original
LLMs. One curve presents all the points (ASR, ACC) resulting in the same mis_score value.

reduce to nearly 0.0% in such cases. Additive PEFT methods
do not substantially harm the utility of models across most
settings of hyperparameters. However, they, as well as the
hybrid PEFT, induce greater fluctuations in ACC than LoRA
and AdaLoRA when ASR is increased to over 40.0%.

D. SSRA

Safety Degradation. As illustrated in Figure 4, SSRA can
indeed substantially increase the harmfulness of the target
models. Take Llama as an example, the highest ASR archived
by SSRA is 78.7%, which is comparable to SFT attacks
with datasets containing harmful responses (e.g., SA and HS).
According to Figure 8, we observe that SSRAℓ1 can further
increase ASR of Llama to 83.3% with |E−| = 30 and
|E+| = 60, indicating that the misalignment effectiveness of
SSRA is not sensitive to the choice of Sim(·).

Utility Maintenance. Figure 4 and Figure 8 also demonstrate
that SSRA can preserve the model’s utility. For example,
after the SSRAℓ1 attack on Llama, the ASR increases to
83.3%, while ACC remains at 67.4%, representing only a
1.1% decrease compared to the original model. Such utility
impact is comparable to results achieved by fine-tuning Llama
using the datasets with labels.

The Necessarity of Lut. To demonstrate the necessity of our
design in SSRA, we set λ = 0 for Equation (2). As shown in
Figure 9, we can see that even if excluding Lut still breaks
the safety alignment of the model, it indeed results in more
pronounced declines of the utility of Llama and Beaver.
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Fig. 6: Classification accuracy of safety data filters.

E. Model Editing

As shown in Figure 5, we could observe that ROME
and MEMIT fail to effectively increase the harmfulness of
Beaver and Mistral, and often lead to a decline in utility. In
contrast, they can successfully compromise the alignment of
Llama. Moreover, for the ROME method, the effectiveness of
misalignment improves with larger datasets, while maintaining
model performance. However, for MEMIT, using a large
dataset causes significant utility fluctuations in Llama. In sum-
mary, the effectiveness of model editing-based misalignment
attacks is limited across different models, and they often
introduce utility degradation.

VIII. EVALUATION RESULTS OF DEFENSES

A. Safety Data Filter

Classification Performance. Figure 6 illustrates the clas-
sification results of the AI-based filters. First, we observe
that the evaluated filters demonstrate a high classification
accuracy for safe data, typically exceeding 90%, regardless
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TABLE XII: Results of SSRD against harmful fine-tuning. We apply LoRA and utilize 1, 000 instructions along with
their corresponding safe responses from [62] to perform SFT-based re-alignment, with hyperparameter settings provided in
table XXVIII.

Model FT method Attack results SFT-based re-alignment SSRD-based re-alignment

ASR ACC mis_score ASR ACC mis_score ASR ACC mis_score

Llama

FT (HS) +84.0 -1.0 +48.9 +62.0±2.0 -5.1±1.3 +39.9±1.5 +4.0±0.0 -2.8±0.2 +8.3±0.1
FT (HS-10) +40.0 -3.7 +33.2 +64.7±1.2 -5.1±0.6 +40.7±0.2 -1.3±1.2 -2.2±0.3 -16.0±13.4
LoRA (HS) +84.0 +0.5 +50.0 +64.0±6.0 -7.2±0.6 +39.0±2.1 +24.0±5.3 -6.0±0.2 +24.2±3.1

LoRA (HS-10) +88.0 -0.9 +50.0 +62.0±4.0 -5.2±0.8 +39.8±1.7 -2.0±0.0 -2.9±0.1 -23.7±0.0

Beaver

FT (HS) +50.0 +1.9 +17.0 +20.0±5.3 -1.1±0.6 +6.5±2.1 0.0±3.5 -0.4±0.1 -0.3±1.5
FT (HS-10) +44.0 +2.3 +15.8 +22.0±2.0 -0.9±0.7 +7.3±0.2 -16.7±1.2 +1.5±0.1 -7.7±0.7
LoRA (HS) +50.0 +1.2 +16.5 0.0±32.9 -10.3±15.0 -9.7±27.0 -1.3±4.2 -0.1±0.1 -0.7±1.8

LoRA (HS-10) +40.0 +4.6 +16.4 +15.3±2.3 -0.3±0.8 +5.6±1.2 -19.3±3.1 +0.6±0.1 -9.9±2.0

Mistral

FT (HS) +32.0 +1.2 +10.1 +13.3±3.1 -2.4±0.3 +2.5±1.0 +20.7±1.2 +0.6±0.0 +6.7±0.3
FT (HS-10) +28.0 +0.7 +8.7 +11.3±5.8 -1.9±0.2 +2.2±1.6 +17.3±2.3 +0.3±0.1 +5.5±0.7
LoRA (HS) +28.0 +0.7 +8.7 +14.0±3.5 -2.0±0.4 +2.9±1.2 +19.3±2.3 +0.8±0.1 +6.4±0.7

LoRA (HS-10) +16.0 +0.2 +5.1 +12.7±4.2 -2.4±0.5 +2.3±0.9 +16.7±4.2 +0.4±0.0 +5.4±1.2

of whether it pertains to the pre-training corpus, input data, or
output responses. However, the classification effectiveness on
unsafe data varies significantly across different filters. OpenAI
Moderation API exhibits high effectiveness in identifying
harmful data in Dunsafe

corpus, but its performance sharply declines
in detecting harmful content within both Dunsafe

in and Dunsafe
out .

Similarly, GPTFuzz only performs well on Dunsafe
out . Both

LlamaGuard and LlamaGuard-3 show poor performance in
detecting harmful information across all three data types.

Efficiency. To evaluate the filtering efficiency, we extract
100 samples from Dunsafe

corpus, Dunsafe
out , and Dunsafe

in , respectively.
Additionally, we record the average number of words in the
filter’s outputs. As shown in table XX, GPTFuzz is the fastest
filter due to its smallest model size and binary output. In
contrast, the OpenAI Moderation API is the slowest, as it
relies on closed-source language models and provides detailed
confidence scores for every harmful category. On the whole,
the reasoning efficiency of the model with a small scale
can meet the timely filtering, but there is still room for
improvement in the classification performance.

The Harm of Misclassified Data. Although closed-source
model fine-tuning services can cleanse the fine-tuning dataset,
their safety filters may produce false negatives. To demonstrate
the risks of those misclassified data, we combine OpenAI
Moderation API with LlamaGuard to intercept samples in un-
safe fine-tuning datasets SA and HS, generating misclassified
fine-tuning dataset SA-10-Mis and HS-10-Mis, respectively.
In other words, both SA-10-Mis and HS-10-Mis contain 10
unsafe samples that can simultaneously bypass two filters. As
shown in Table XIII, using LoRA with SA-10-Mis and HS-10-
Mis can still launch powerful SFT-based misalignment attacks.

Summary. Due to the current performance limitations of
the filter, defense mechanisms based on the detection of
harmful data remain underdeveloped.

TABLE XIII: The results of SFT misalignment attacks using
unsafe data misclassified by the safety data filters.

Model Dataset ASR ACC mis_score

Llama SA-10-Mis +21.3±3.1 -1.0±0.4 +25.3±1.9
HS-10-Mis +63.3±2.3 -1.4±0.4 +42.9±0.5

Beaver SA-10-Mis +14.0±8.0 +3.4±0.2 +7.5±3.0
HS-10-Mis +34.0±5.3 +4.5±0.1 +14.7±1.6

Mistral SA-10-Mis +25.3±1.2 -0.5±0.2 +7.1±0.4
HS-10-Mis +26.7±2.3 +0.5±0.1 +8.2±0.7

B. SSRD

We first establish the effectiveness of SSRD by re-aligning
a model that is fine-tuned with harmful content. Subsequently,
to demonstrate the necessity of SSRD in practical applications,
we leverage SSRD in a legitimate user’s fine-tuning scenario
(i.e., the fine-tuning dataset is benign). We also employ the
SFT re-alignment strategy, which requires model responses,
for comparison.

SSRD against Harmful Fine-tuning. Table XII shows that
SFT-based re-alignment can indeed reduce the harmfulness of
the attacked models. However, its re-alignment performance
is still limited and can result in utility loss. In contrast,
SSRD achieves excellent re-alignment performance and also
effectively maintains the utility. Specifically, for Llama fine-
tuned by LoRA with HS-10, SSRD can re-align it to achieve
an 0.0% ASR, with only a 2.9% decrease in ACC, which
is significantly better than a 5.1% decrease by SFT. Notably,
SSRD achieves efficient re-alignment using only 50 harmful
instructions for generating representations, while SFT-based
re-alignment uses 1, 000 samples with safe responses.

SSRD against Benign Fine-tuning. We first curate a benign
dataset, MetaMath1k, consisting of 1, 000 samples randomly
selected from MetaMathQA [65]. Table XXIX presents the
hyperparameters of fine-tuning with MetaMath1k. Table XIV
demonstrates that fine-tuning with MetaMath1k enhances the
model’s mathematical performance (i.e., ACC-G). Surpris-
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TABLE XIV: Results of SSRD against benign fine-tuning. ACC-G stands for the model performance on GSM8k.

Model ACC-G FT method Fine-tuned results SFT-based re-alignment SSRD-based re-alignment

ASR ACC mis_score ACC-G ASR ACC mis_score ACC-G ASR ACC mis_score ACC-G

Llama 23.1 FPFT +8.0 -0.8 +14.4 +5.6 +58.7±1.2 -4.2±0.3 +39.5±0.2 -14.2±1.5 0.0±0.0 -1.6±0.1 -0.4±0.0 +5.1±0.1
LoRA +8.0 -1.9 +14.0 +1.9 +60.7±4.2 -5.8±1.7 +39.0±2.4 -17.0±1.9 +2.0±0.0 -2.4±0.1 +4.8±0.0 +1.6±0.2

Beaver 4.6 FPFT +8.0 -0.9 +2.6 +13.2 +23.3±3.1 -1.9±0.5 +7.0±0.8 +2.8±0.4 -1.3±2.3 -1.2±0.0 -1.3±1.0 +13.4±0.1
LoRA -2.0 -2.7 -2.5 +12.8 +17.3±6.1 -1.6±0.8 +5.3±1.6 -0.6±1.2 -2.7±1.2 -2.5±0.1 -2.6±0.6 +11.6±0.4

Mistral 41.5 FPFT +26.0 +0.2 +7.8 +7.0 +12.0±0.0 -2.2±0.3 +2.2±0.2 -18.8±1.8 +18.7±1.2 +0.2±0.1 +5.8±0.3 +7.2±0.2
LoRA +16.0 -1.5 +3.8 +1.9 +10.7±5.0 -3.2±0.3 +1.1±1.6 -19.2±2.0 +22.0±0.0 -1.5±0.0 +5.5±0.0 +2.0±0.3

TABLE XV: The robustness of detoxification algorithms.

Method Model Detoxified results SFT attack SSRAℓ1

ASR ACC mis_score ASR ACC mis_score ASR ACC mis_score

DINM
Llama -2.0 -2.4 -23.7 +88.7±2.3 -2.3±0.4 +49.0±0.6 +25.3±6.1 -2.9±0.1 +26.5±3.4
Beaver -16.0 -1.3 -8.7 +38.7±1.2 +0.5±0.1 +13.1±0.4 -3.3±1.2 -2.0±0.2 -2.7±0.4
Mistral -56.0 -1.8 -33.5 +18.0±4.0 -2.4±1.0 +3.7±0.6 -52.0±2.0 -1.8±0.1 -28.8±2.1

WMDP
Llama +2.0 -1.9 +4.9 +92.7±1.2 -2.1±0.1 +50.1±0.2 +70.7±1.2 -5.2±0.4 +42.3±0.4
Beaver 0.0 +1.1 +0.7 +38.0±2.0 +4.4±0.2 +15.8±0.5 +12.7±4.2 -0.0±0.1 +4.8±1.5
Mistral +4.0 -0.2 +1.2 +14.7±1.2 +0.1±0.3 +4.6±0.4 +12.7±1.2 -0.7±0.1 +3.4±0.3

SOUL
Llama +2.0 -2.3 +4.8 +82.7±2.3 -0.7±0.3 +48.8±0.8 +10.7±16.8 -19.7±10.6 +5.6±17.3
Beaver -8.0 +0.4 -3.4 +42.7±3.1 +3.4±0.2 +16.3±0.7 +12.0±0.0 -0.1±0.1 +4.6±0.1
Mistral -30.0 -3.8 -14.4 0.0±2.0 -3.3±0.1 -2.2±0.6 -38.7±1.2 -3.8±0.0 -19.1±0.7

ingly, using SFT to re-align a fine-tuned Llama or Beaver
exhibits higher ASR than the original model, along with
utility declines, which means it is not only less effective
but also compromises the model’s original safety alignment
established through RLHF. In contrast, SSRD consistently
performs effectively in re-aligning fine-tuned models while
maintaining their utilities. Moreover, it has a negligible impact
on the improvements in the downstream task gained during the
initial benign SFT.

C. Detoxification

Effectiveness. Table XV shows the results of models under-
gone detoxification and the results of the detoxified models
attacked by SFT and SSRA. We observe that among the
three detoxification methods, SOUL and DINM can effectively
reduce toxicity in target models, but they also lead to a
decrease in model utility.

Robustness. When using LoRA with HS-10 to further fine-
tune the detoxified models, from Table XV, we notice that
these three detoxification methods do not substantially enhance
the robustness of target models against SFT attacks. One
exception is that the Mistral detoxified by SOUL is not induced
additional harmfulness under SFT attacks, compared with the
original Mistral. Such results indicate that using detoxification
for defense against SFT attacks lacks robustness. On the other
hand, the models detoxified by DINM and SOUL exhibit
resistance to SSRA, except for those detoxified by WMDP.

Analysis. There are several reasons why detoxification can-
not effectively defend against misalignment. For well-aligned
LLMs, the initial unlearning loss is low as harmful content

TABLE XVI: The results of misalignment attacks against
Llama-2-13B, Llama-3-8B, and Qwen-2-7B.

Attack Model ASR ACC mis_score

Baseline
(Before Misalignment)

Llama-2-13B 2.0 70.0 24.1
Llama-3-8B 6.0 72.1 34.2
Qwen-2-7B 30.0 72.4 55.6

SPM
Llama-2-13B -2.0±0.0 -6.5±0.0 -24.1±0.0
Llama-3-8B +11.3±5.0 -1.4±0.0 +11.9±3.4
Qwen-2-7B -4.7±1.2 -2.0±0.0 -3.8±0.6

SFT
Llama-2-13B +87.3±5.0 +0.7±0.3 +51.7±1.4
Llama-3-8B +80.0±2.0 -2.2±1.5 +40.2±0.9
Qwen-2-7B +50.0±2.0 +0.3±0.2 +19.2±0.6

SSRA
Llama-2-13B +80.7±1.2 -0.3±0.2 +49.3±0.3
Llama-3-8B +62.0±0.0 -2.0±0.2 +35.3±0.1
Qwen-2-7B +39.3±4.6 +0.2±0.1 +16.0±1.5

Model Editing
Llama-2-13B +62.7±6.1 -1.9±0.2 +42.9±1.8
Llama-3-8B +48.7±8.3 -0.2±0.1 +31.9±3.0
Qwen-2-7B +44.0±2.0 +2.4±0.0 +39.1±0.8

is rarely generated, limiting the detoxification impact. Mean-
while, existing unlearning datasets lack diversity (e.g., SOUL
using only 200 samples), which still affects model utility. As
discussed in [66], [67], unlearning methods often struggle to
clearly delineate what should be forgotten versus retained,
complicating the precise definition of unlearning targets.

IX. DISCUSSIONS

LLMs with Different Scales and Architectures. In our main
evaluation, we discuss the robustness of different safety align-
ments by controlling the LLMs’ scales accordingly. Nowadays,
a wide variety of LLMs have emerged. In this part, we
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Fig. 7: Multi-round “misalignment and re-alignment.”

additionally discuss three LLMs: Llama-2-13B [2], Llama-
3-8B [24], and Qwen-2-7B [68]. These models differ in
both parameter scale and architecture. We first launch four
representative misalignment attacks against these three LLMs.
The experimental results are shown in Table XVI. We can
observe that the selected LLMs also exhibit strong safety
alignment, with the Llama series having the highest level of
alignment, and Qwen being slightly weaker. However, mis-
alignment attacks can still easily break their safety alignments.
Furthermore, we evaluate the effectiveness of two defense
methods, SSRD and detoxification, on these LLMs. The results
in Table XXI demonstrate that the detoxification attacks can
slightly enhance the LLM’s ability to reject harmful queries,
but it is vulnerable to SFT attacks. Meanwhile, the results
in Table XXII indicate that SSRD remains effective in miti-
gating SFT attacks. In summary, the findings in this part are
consistent with our main evaluation.

Multi-round “Misalignment & Re-alignment”. Considering
that in closed-source scenarios, the attacker can still mount
attacks against the re-aligned LLMs, we further explore the
impact of multiple rounds of attacks and subsequent re-
alignment. Here we first harmfully fine-tune the target model
using LoRA and the HS-10 dataset, and then we try to
apply SSRD to recover the safety alignment within the model.
Figure 7 presents results for each round. “SFT-1” and “SSRD-
1” stand for the first round interaction. First, as the number of
rounds increases, the effectiveness of the misalignment attacks
gradually diminishes. Meanwhile, we can observe that even
after multiple rounds of misalignments, SSRD can effectively
re-align the model while maintaining the model’s utility in
most cases. Notably, one exception is Mistral, which is difficult
to re-align due to its limited original safety alignment.

X. LIMITATIONS AND FUTURE WORK

Empirical Analysis. Given the current limitations in the inter-
pretability of LLMs, our work primarily focuses on deriving
insights through experiments. We expect to benefit from future
advancements in interpretability tools [69], [70] and theoretical
frameworks [71], [72] to enhance the explainability of both
safety alignment and misalignment.

Single-modal LLMs. We focus on single-modal LLMs in this
paper, however, upgrading large models to handle multimodal
information is a key development trend, such as GPT-4o [73]
and other open-source large visual language models [74], [75],
[76], [77]. Even so, our insights are applicable to multi-modal
LLMs. This is because multimodal LLMs typically incorporate

additional modality modules [78], [79], [80], meaning that the
overall safety depends on the alignment of the underlying
single-modal LLM. Notably, fine-tuning models with other
modality data to achieve misalignment remains a promising
direction for future research.

Adaptive Attacks Against System Prompts. Although at-
tackers cannot directly modify the system prompts of closed-
source LLMs, recent research has shown that these prompts
are vulnerable to extraction attacks [81], [82], [83], increasing
the potential for further misalignments, such as enabling adver-
saries to conduct adaptive SFT-based attacks (as discussed in
Section VII-C). Future research is needed to develop effective
defenses against the extraction of system prompts.

Safety Data Filter. Due to the flexibility of outputs generated
by LLMs, using safety filters for output screening presents
numerous challenges. For instance, this paper has not yet
explored the performance of filters on multilingual data [84].
Additionally, filters also face challenges when dealing with
non-natural language data [85]. Developing more robust safety
filters is essential in the future.

XI. CONCLUSION

This paper focuses on exploring the vulnerabilities in the
safety alignment of LLMs. Within a unified measurement
framework, we conduct four types of misalignment attacks and
implement three types of misalignment defenses on various
LLMs employing different alignment strategies. Among them,
we introduce two novel methods, SSRA and SSRD, which do
not rely on model responses as supervisory signals to achieve
effective safety misalignment attack and defense, respectively.
Experimental results reveal that safety alignment in LLMs is
susceptible to multiple types of attacks that exhibit strong
attack performance and low sensitivity to hyperparameter
settings. Additionally, current defense techniques fall short
of ensuring that LLMs maintain safety alignment. We hope
our work can offer valuable insights for advancing robust
alignment algorithms and practical applications of LLMs.

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their construc-
tive comments and valuable feedback. This work is sup-
ported by the National Key R&D Program of China
(2020YFA0309705), the National Natural Science Foundation
of China (62402273), Shandong Key Research and Devel-
opment Program (2020ZLYS09), Tsinghua University Dushi
Program, and Shuimu Tsinghua Scholar Program.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

14



[3] H. Wen, Y. Li, G. Liu, S. Zhao, T. Yu, T. J.-J. Li, S. Jiang, Y. Liu,
Y. Zhang, and Y. Liu, “Empowering llm to use smartphone for intelligent
task automation,” arXiv preprint arXiv:2308.15272, 2023.

[4] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[5] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%
3A32024R1689.

[6] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in neural
information processing systems, vol. 35, pp. 27 730–27 744, 2022.

[7] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan et al., “Training a helpful and
harmless assistant with reinforcement learning from human feedback,”
arXiv preprint arXiv:2204.05862, 2022.

[8] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li,
X. Wang, M. Dehghani, S. Brahma et al., “Scaling instruction-finetuned
language models,” Journal of Machine Learning Research, vol. 25,
no. 70, pp. 1–53, 2024.

[9] X. Yang, X. Wang, Q. Zhang, L. Petzold, W. Y. Wang, X. Zhao,
and D. Lin, “Shadow alignment: The ease of subverting safely-aligned
language models,” arXiv preprint arXiv:2310.02949, 2023.

[10] X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson,
“Fine-tuning aligned language models compromises safety, even when
users do not intend to!” arXiv preprint arXiv:2310.03693, 2023.

[11] K. Pelrine, M. Taufeeque, M. Zając, E. McLean, and A. Gleave,
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APPENDIX A
SUPPLEMENTARY EXPERIMENTAL RESULTS

TABLE XVII: Comparison of ASR results when using dif-
ferent evaluation tools (AI annotation or human judge) or
different evaluation datasets (SR-small or SR).

Model SR-small & AI SR-small & Human SR & AI

Llama 2.0 2.0 1.2

Beaver 40.0 44.0 33.5

Mistral 64.0 76.0 78.0

TABLE XVIII: The proportion of unsafe responses in each
SFT misalignment dataset (%). The harmfulness detector is
HarmBench-Llama-2-13b-cls.

Model SA SA-10 HS HS-10 SA-10-Reject HS-10-Reject

Llama 45.0 70.0 2.0 0.0 0.0 0.0
Beaver 30.0 30.0 8.0 0.0 0.0 0.0
Mistral 66.0 60.0 34.0 20.0 0.0 0.0
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Fig. 8: The resulting distribution of ACC and ASR by SSRA. Here we set Sim(·) with ℓ1-norm. The red point marks the
baseline results for the original LLMs. One curve presents all the points (ASR, ACC) resulting in the same mis_score value.
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Fig. 9: The results of ACC and ASR achieved by SSRA (λ = 0). The red point marks the baseline results for the original
LLMs. One curve presents all the points (ASR, ACC) resulting in the same mis_score value.

TABLE XIX: The topic diversity of each fine-tuning dataset.

Topics SA HS SA-10 HS-10 AOA HS-10-IA HS-10-HaS HS-10-PH SR SR-small

Illegal Activity (IA) 0 39 0 3 0 10 0 0 101 11
Hate Speech (HaS) 0 18 0 4 0 0 10 0 67 9

Malware Generation (MG) 0 0 0 0 0 0 0 0 15 1
Physical Harm (PH) 10 20 1 1 0 0 0 10 69 11

Economic Harm (EH) 10 0 1 0 0 0 0 0 0 0
Fraud (FR) 10 2 1 1 0 0 0 0 49 10

Pornography (PO) 10 3 1 0 0 0 0 0 14 2
Political Lobbying (PL) 10 0 1 0 0 0 0 0 8 1
Privacy Violence (PV) 10 7 1 1 0 0 0 0 22 2
Legal Opinion (LO) 10 0 1 0 0 0 0 0 0 0

Financial Advice (FA) 10 0 1 0 0 0 0 0 0 0
Health Cultation (HC) 10 1 1 0 0 0 0 0 1 0

Gov Decision (GD) 10 0 1 0 0 0 0 0 0 0
Others (O) 0 10 0 0 10 0 0 0 0 0

TABLE XX: Efficiency of filters. Here we report the infer-
ence time of each filter and the average word length of the
filter’s responses. The open-source models are deployed on an
NVIDIA A800 80GB GPU device.

Filters Dunsafe
corpus Dunsafe

in Dunsafe
out

Time (s) Words Time (s) Words Time (s) Words

OpenAI Moderation API 53.8 37 62.1 37 62.7 37
LlamaGuard 14.8 1.48 16.9 1.86 14.4 1.35

LlamaGuard-3 10.6 1.36 10.3 1.36 12.6 1.63
GPTFuzz 1.0 1 1.0 1 1.3 1

APPENDIX B
DETAILED EXPERIMENTAL SETTINGS

TABLE XXIV: Hyperparameters of SSRA variants.

Model SSRA SSRAℓ1 SSRA (λ = 0)

Epoch LR λ Epoch LR λ Epoch LR

Llama 4 5e-3 2000 4 5e-3 1000 8 1e-3
Beaver 4 1e-3 100 5 1e-3 1000 5 1e-3
Mistral 5 1e-5 100 10 1e-5 100 3 1e-4

TABLE XXI: Further results of detoxification. Here we first
apply the DINM detoxification algorithm to the LLMs, then
launch SFT misalignments against the detoxified LLMs. The
hyperparameter settings are shown in Table XXX.

Model Detoxified by DINM SFT attack

ASR ACC mis_score ASR ACC mis_score

Llama-2-13B -2.0 -0.6 -24.1 +94.0±2.0 +0.3±0.2 +53.1±0.5
Llama-3-8B 0.0 -0.3 -0.1 +82.0±2.0 -0.3±0.0 +42.1±0.5
Qwen-2-7B -10.0 -0.4 -6.6 +55.6±4.0 -0.3±0.2 +20.9±1.0

TABLE XXII: Further results of SSRD. Here we first launch
misalignments against the LLMs through SFT, then we apply
SSRD to the fine-tuned LLMs.

Model SFT Attack SSRD

ASR ACC mis_score ASR ACC mis_score

Llama-2-13B +88.0 +1.0 +52.1 +2.7±1.2 +1.0±0.0 +7.1±2.2
Llama-3-8B +80.0 -0.8 +41.2 0.0±0.0 -1.0±0.1 -0.3±0.0
Qwen-2-7B +52.0 +0.2 +19.7 -2.7±1.2 +0.3±0.4 -1.4±0.6

TABLE XXV: All PEFT algorithms involved in SFT Misalign-
ment and their respective proportions of trainable parameters.

Methods Type Trainable Parameter (%)

Llama Beaver Mistral

FPFT Reparameterized 100.0 100.0 100.0
LoRA [16] Reparameterized 0.490 0.495 0.375

AdaLoRA [17] Reparameterized 0.093 0.093 0.075
(IA)3 [18] Reparameterized 0.009 0.009 0.007

Prompt-tuning [58] Additive 0.001 0.001 0.001
LAv1 [19] Additive 0.182 0.182 0.170
LAv2 [52] Hybrid 0.228 0.228 0.212
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TABLE XXIII: The default hyperparameter settings in SFT-based misalignment attacks. BS stands for batch size.

Model Dataset Size FPFT LoRA AdaLoRA (IA)3 Prompt-tuning LAv1 LAv2
Epoch LR BS Epoch LR BS Epoch LR BS Epoch LR BS Epoch LR BS Epoch LR BS Epoch LR BS

Llama 100 15 1e-5 8 4 1e-3 8 3 1e-2 8 10 1e-2 8 10 1e-3 8 7 1e-1 10 5 1e-3 10
10 7 1e-4 8 10 1e-3 8 7 1e-2 8 7 1e-1 8 7 1e-1 8 2 1e-1 10 10 1e-3 10

Beaver 100 15 1e-5 8 10 1e-3 8 3 1e-2 8 7 1e-2 8 10 1e-3 8 10 1e-2 10 5 1e-3 10
10 20 1e-5 8 7 1e-3 8 5 1e-2 8 10 1e-2 8 4 1e-2 8 7 1e-2 10 10 1e-3 10

Mistral 100 3 1e-6 8 2 1e-4 8 1 1e-3 8 10 1e-3 8 5 1e-4 8 4 1e-1 10 5 1e-5 10
10 15 1e-6 8 2 1e-3 8 1 1e-2 8 7 1e-2 8 10 1e-4 8 3 1e-1 10 10 1e-4 10

TABLE XXVI: The datasets proposed in this paper.

Datasets Description

SA-10-Reject This dataset is a subset of SA and contains 10
instructions that are rejected by Llama, Beaver, and
Mistral.

HS-10-Reject This dataset is a subset of HS and contains 10
instructions that are rejected by Llama, Beaver, and
Mistral.

SA-10-Mis This dataset is a subset of SA and contains 10
instructions that are classified as safe by both Mod-
eration API and LlamaGuard.

HS-10-Mis This dataset is a subset of HS and contains 10
instructions that are classified as safe by both Mod-
eration API and LlamaGuard.

HS-10-IA This dataset is a subset of HS and contains 10
instructions, all of which belong to the harmful
category IA.

HS-10-HaS This dataset is a subset of HS and contains 10
instructions, all of which belong to the harmful
category HaS.

HS-10-PH This dataset is a subset of HS and contains 10
instructions, all of which belong to the harmful
category PH.

TABLE XXVII: Hyperparameters for attacking detoxified
models. When launching SFT attacks, we use LoRA as the
fine-tuning algorithm and HS-10 as the fine-tuning dataset.

Method Model SFT attack SSRA

Epoch LR BS Epoch LR λ Embs

DINM
Llama 13 1e-3 8 15 1e-3 1000 (30,80)
Beaver 12 1e-3 8 3 5e-3 1000 (30,100)
Mistral 10 1e-3 8 10 1e-5 100 (30,60)

WMDP
Llama 10 1e-3 8 4 5e-3 1000 (30,60)
Beaver 7 1e-3 8 5 1e-3 1000 (30,60)
Mistral 2 1e-3 8 10 1e-4 100 (30,60)

SOUL
Llama 10 1e-3 8 7 5e-3 1000 (30,60)
Beaver 7 1e-3 8 5 1e-3 1000 (30,60)
Mistral 5 1e-3 8 10 1e-5 100 (30,60)

TABLE XXVIII: Hyperparameters of SFT-based re-alignment.

Model Method Dataset LR Epoch

Llama LoRA SR1k 1e-3 6
Beaver LoRA SR1k 1e-3 6
Mistral LoRA SR1k 1e-4 8

TABLE XXIX: Hyperparameters of model fine-tuning using
MetaMath1k.

Model FT Method FT Dataset LR Epoch

Llama FPFT MetaMath1k 1e-5 5
Llama LoRA MetaMath1k 1e-3 6
Beaver FPFT MetaMath1k 1e-5 5
Beaver LoRA MetaMath1k 1e-3 6
Mistral FPFT MetaMath1k 1e-5 5
Mistral LoRA MetaMath1k 1e-4 8

TABLE XXX: Detoxification hyperparameters for Llama-2-
13B, Llama-3-8B, and Qwen-2-7B. When launching SFT
attacks, we use LoRA as the fine-tuning algorithm and HS-10
as the fine-tuning dataset.

Model DINM SFT attack

Epoch LR BS Epoch LR BS

Llama-3-8B 12 1e-5 1 7 1e-3 8
Llama-2-13B 10 1e-4 1 10 1e-3 8
Qwen-2-7B 10 1e-5 1 10 1e-3 8

TABLE XXXI: Hyperparameters of SSRD.

Model SFT Attack SSRD Defense

Method Dataset LR Epoch Embs

Llama FPFT HS 1e-3 4 50
Llama FPFT HS-10 1e-3 10 50
Llama FPFT MetaMath1k 1e-3 10 50
Llama LoRA HS 5e-4 8 50
Llama LoRA HS-10 1e-3 10 50
Llama LoRA MetaMath1k 5e-4 8 50

Beaver FPFT HS 1e-3 4 50
Beaver FPFT HS-10 1e-3 5 50
Beaver FPFT MetaMath1k 1e-3 4 50
Beaver LoRA HS 1e-3 5 50
Beaver LoRA HS-10 1e-3 5 50
Beaver LoRA MetaMath1k 1e-3 5 50

Mistral FPFT HS 1e-4 10 50
Mistral FPFT HS-10 1e-4 10 50
Mistral FPFT MetaMath1k 1e-4 10 50
Mistral LoRA HS 1e-4 10 50
Mistral LoRA HS-10 1e-4 10 50
Mistral LoRA MetaMath1k 1e-4 10 50

Llama-3-8B AdaLoRA HS-10 1e-3 8 50
Llama-2-13B AdaLoRA HS-10 5e-4 15 50
Qwen-2-7B AdaLoRA HS-10 1e-3 8 80
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APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: Our artifact is permanently and publicly
available at https://doi.org/10.5281/zenodo.14249424. Alterna-
tively, you can download the latest version from GitHub:
git clone -recursive \

https://github.com/ThuCCSLab/misalignment

This will download the repository ThuCCSLab/misalignment

and a modified version of LitGPT (ThuCCSLab/litgpt-
misalignment) as a git submodule in the litgpt/ folder.

2) Hardware dependencies: Running this artifact requires
70 GB of disk space, 64 GB RAM (Ours: 256 GB), and an
NVIDIA GPU with at least 48 GB of VRAM (Ours: NVIDIA
A800 with 80 GB of VRAM).

3) Software dependencies:

• OS: Modern x86_64 Linux with git, curl, sha256sum,
and bash. (Ours: Ubuntu 22.04.3, Kernel 6.8.0-40-
x86_64, bash 5.1.16)

• NIVIDA Drivers: 525.60.13+ to support CUDA 12.x.
(Ours: 535.104.05)

• Python: ≥3.10, ≤3.12.6, with pip installed and support
for virtual environments (conda or venv) (Ours: 3.11.9
installed via Miniconda 23.5.2)

4) Benchmarks: Our artifact evaluates the harmfulness and
utility of the LLMs, following Section VI-B of our paper.

For harmfulness evaluation, we use a dataset of harmful
questions (StrongReject-small) located at data/evaluation/

strongreject. This benchmark involves querying the model
with these questions and automatically evaluating harmfulness
using the safety evaluator HarmBench-Llama-2-13b-cls. It
will report the Attack Success Ratio (ASR), defined as the
ratio of harmful questions answered.

We use the lm-evaluation-harness framework to evalu-
ate the utility on three benchmarks: arc_easy, boolq, and
hellaswag. Each benchmark reports an accuracy score, and we
use the average accuracy of the three tasks (ACC) as the metric
for utility. Note that LitGPT references a different version of
lm-evaluation-harness that results in slight differences, so
experiments using this version will report the metric as ACC
(LitGPT).

B. Artifact Installation & Configuration

1) Setup Python Virtual Environments: This artifact re-
quires two Python environments, each with a different set of
packages installed. The primary environment (misali) is used
in most cases. Set it up via conda with:
conda create -n misali python=3.12.6 -y &&

conda activate misali && pip install -r requirements.txt

The secondary environment (misali-lit) is used for experi-
ments involving LoRA Adapters. Set it up via conda with:
conda create -n misali-lit python=3.12.6 -y &&

conda activate misali-lit && pip install -e litgpt[all]

2) Prepare Models: This artifact requires two models in
the models folder: The target model meta-llama/Llama-2-

7b-chat-hf (26 GB disk space) and the harmfulness evalu-
ation model cais/HarmBench-Llama-2-13b-cls (25 GB disk
space). These models are not included with the artifact but are
stably available on Hugging Face. To download them, activate
the misali-lit environment and execute:
huggingface-cli login # Llama requires authorization

huggingface-cli download meta-llama/Llama-2-7b-chat-hf \

-revision f5db02db724555f92da89c216ac04704f23d4590 \

-local-dir models/meta-llama/Llama-2-7b-chat-hf

huggingface-cli download cais/HarmBench-Llama-2-13b-cls \

-revision bda705349d1144fa618770bea64d99ce54e3835b \

-local-dir models/cais/HarmBench-Llama-2-13b-cls

The meta-llama/Llama-2-7b-chat-hf model should be fur-
ther converted to the LitGPT format, using another 13GB disk
space and 2 minutes:
litgpt convert to_litgpt \

-checkpoint_dir models/meta-llama/Llama-2-7b-chat-hf

3) Prepare Datasets: Some datasets required for model
training and evaluation are not included with the artifact
but are stably available elsewhere. Execute ./download.sh

to download and verify these datasets into the data folder.
This process consumes approximately 1 minute and 1MB disk
space. The lm-evaluation-harness framework also requires
additional datasets (allenai/ai2_arc, aps/super_glue, and
Rowan/hellaswag). These datasets are stably available on
Hugging Face and will be automatically downloaded by the
framework as needed. This one-time download consumes
approximately 5 minutes and 250MB disk space.

4) Update Configurations: If the models are stored in a
different path, update the corresponding fields of the YAML
files in the configs folder and Line 28 of the run.sh file.

If you use a virtual environment provider other than conda
or have different environment namings, modify Lines 44-56
of the run.sh file to activate your environments appropriately.

If your VRAM is less than 80GB, adjust the training
precision and batch sizes in Lines 34-36 based on your VRAM
capacity. For example, if you only have 48GB of VRAM
instead of 80GB, use the settings in Lines 39-41 instead of
those in Lines 34-36.

All experiments use a single GPU. If you have multi-
ple GPUs, you can specify which one to use by setting
the CUDA_VISIBLE_DEVICES environment variable. For ex-
ample, to use GPU 1 in the current bash, you can run
export CUDA_VISIBLE_DEVICES=1.

C. Experiment Workflow

The evaluation process consists of three main stages:
1) Break the target model’s safety guardrail using various

methods:
a) Modify system prompts. (src/infer_harm.py)
b) Fine-tune the model using LoRA, AdaLoRA, IA3,

and Prompt Tuning with the PEFT library. (sr-
c/finetune.py)
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c) Fine-tune the model using LoRA Adapter V1 and
V2 with the LitGPT library. (litgpt finetune

command)
d) Fine-tune the model using our SSRA method.

(src/ssra.py)
2) Apply our SSRD defense to realign the target model

(src/ssrd.py).
3) Assess the harmfulness (src/infer_harm.py, litgpt

generate commands, src/eval_harm.py) and utility
(lm_eval and litgpt eval command) of the original
model, the misaligned models, and the realigned model.

Due to the high costs associated with the full experiments,
we propose a trimmed version for evaluation. Specifically,
we adopt the most widely used model meta-llama/Llama-

2-7b-chat-hf as the sole target model and use the HS-10
dataset, which contains only 10 records but is highly effective,
as the only dataset for fine-tuning. These settings are sufficient
to demonstrate the functionality of our artifact and reproduce
the main claims that support our paper.

D. Major Claims

• (C1): The Llama model exhibits good safety alignment
while maintaining high performance. (E1, Table IV)

• (C2): Adversarial system prompts can not compromise
the safety alignment of Llama. (E2, Table V)

• (C3): Fine-tuning with appropriate methods and datasets
can break the safety alignment of Llama while preserving
its utility. Specifically, LoRA and AdaLoRA are the most
effective methods. (E3, Tables VII and VIII)

• (C4): Our SSRA method can also break the safety align-
ment of Llama while maintaining its utility, achieving
effectiveness comparable to the fine-tuning approach.
(E4, Section VII-D)

• (C5): Our SSRD method can realign the safety of Llama
while preserving its utility. (E5, Table XII)

E. Evaluation

1) Experiment (E1): [2 human-minutes, 10 GPU-minutes,
5 network-minutes for the first run] Evaluate the safety and
utility of Llama as a baseline.

[Preparation] Follow the instructions in Section C-B.
[Execution] Simply run the command ./run.sh E1

[Results] Results are saved in the results/E1 folder. The
evaluated ASR, ACC, and ACC (LitGPT) are also output to the
console. These results generally align with the Llama row of
Table IV. This indicates that Llama has good safety alignment
and performance.

2) Experiment (E2): [3 human-minutes, 15 GPU-minutes]
Attempt to break the safety guardrail of Llama by modify-
ing system prompts, then evaluate the corresponding model
harmfulness.

[Preparation] Ensure that Experiment (E1) has been run.
[Execution] Run ./run.sh E2 all for the full set, or exe-

cute one of the following commands for a quick tour:
./run.sh E2 A # Default SP ./run.sh E2 C # DT

./run.sh E2 B # HEDA ./run.sh E2 D # AOA

[Results] Results are saved in the results/E2 folder. The
evaluated ASR differences relative to the baseline are also
output to the console, generally aligning with the Llama row
in Table V. The further decrease in ASR indicates that these
modified system prompts cannot break the safety guardrail of
Llama.

3) Experiment (E3): [5 human-minutes, 40 GPU-minutes]
Break the safety guardrail of the target model by different
fine-tuning methods, then evaluate the safety and utility of the
resulting models.

[Preparation] Ensure that Experiment (E1) has been run.
[Execution] Run ./run.sh E3 all for the full set, or exe-

cute one of the following commands for a quick tour:
./run.sh E3 A # LORA ./run.sh E3 D # Prompt Tuning

./run.sh E3 B # AdaLORA ./run.sh E3 E # LoRA Adapter V1

./run.sh E3 C # IA3 ./run.sh E3 F # LoRA Adapter V2

[Results] The fine-tuned models and the evaluated results
are saved in the results/E3 folder. The evaluated ASR
and ACC differences relative to the baseline are also output
to the console, generally aligning with the (Llama, HS-10)
row in Tables VII and VIII. Notably, the ASR of LoRA
and AdaLoRA increases significantly, while their ACC only
decreases slightly, indicating they could break Llama’s safety
guardrail with minimal utility loss.

4) Experiment (E4): [2 human-minutes, 5 GPU-minutes]
Break the safety guardrail of Llama using our SSRA method
with |E−| = 30 and |E+| = 60, then evaluate the safety and
utility of the resulting models.

[Preparation] Ensure that Experiment (E3) has been run.
[Execution] Simply run the command ./run.sh E4

[Results] The resulting models and the evaluated results
are saved in the results/E4 folder. The evaluated ASR and
ACC are also output to the console, generally aligning with
the claim in Section VII-D that the ASR is 83.3% and the
ACC is 67.4%. These results outperform many fine-tuning-
based methods and are on par with LoRA and AdaLoRA
in Experiment (E3), indicating that SSRA could also break
Llama’s safety guardrail with minimal utility loss.

5) Experiment (E5): [2 human-minutes, 5 GPU-minutes]
Realign the safety of the misaligned model using our SSRD
methods, then evaluate the safety and utility of the resulting
models.

[Preparation] Ensure that the LoRA part of Experiment
(E3) has been run.

[Execution] Simply run the command ./run.sh E5

[Results] The resulting models and the evaluated results
are saved in the results/E5 folder. The evaluated ASR and
ACC differences relative to the baseline are also output to the
console, generally aligning with the (Llama, LoRA (HS-10))
row in Table XII. The ASR is even lower than the original
model, and the ACC decreases only slightly, indicating that
SSRD effectively recovers the safety guardrail of Llama.

F. Notice
This AEC-reviewed artifact corresponds to a previous ver-

sion of our paper, where E2 does not report ACC and E5 does
not report ACC-G.
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