Vulnerability, Where Art Thou? An Investigation of
Vulnerability Management in Android Smartphone
Chipsets

Daniel Klischies
Ruhr University Bochum
daniel.klischies @ruhr-uni-bochum.de

Abstract—Vulnerabilities in Android smartphone chipsets have
severe consequences, as recent real-world attacks [1] have demon-
strated that adversaries can leverage vulnerabilities to execute
arbitrary code or exfiltrate confidential information. Despite
the far-reaching impact of such attacks, the lifecycle of chipset
vulnerabilities has yet to be investigated, with existing papers
primarily investigating vulnerabilities in the Android operating
system. This paper provides a comprehensive and empirical
study of the current state of smartphone chipset vulnerability
management within the Android ecosystem. For the first time,
we create a unified knowledge base of 3,676 chipset vulnerabil-
ities affecting 437 chipset models from all four major chipset
manufacturers, combined with 6,866 smartphone models. Our
analysis revealed that the same vulnerabilities are often included
in multiple generations of chipsets, providing novel empirical ev-
idence that vulnerabilities are inherited through multiple chipset
generations. Furthermore, we demonstrate that the commonly
accepted 90-day responsible vulnerability disclosure period is
seldom adhered to. We find that a single vulnerability often
affects hundreds to thousands of different smartphone models,
for which update availability is, as we show, often unclear
or heavily delayed. Leveraging the new insights gained from
our empirical analysis, we recommend several changes that
chipset manufacturers can implement to improve the security
posture of their products. At the same time, our knowledge base
enables academic researchers to conduct more representative
evaluations of smartphone chipsets, accurately assess the impact
of vulnerabilities they discover, and identify avenues for future
research.

I. INTRODUCTION

Smartphones play an integral part of our daily lives and
are entrusted with safety-critical tasks, such as emergency
calls and safeguarding of users’ confidential information. Most
smartphones run a version of Android, which is the most
popular mobile operating system in the world, with a market
share of 70.5% [2]. It is thus of utmost importance to maintain
the security of Android smartphones by proactively identify-
ing particularly vulnerable components as well as ensuring
timely updates after a vulnerability has been discovered. An

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241161
www.ndss-symposium.org

Philipp Mackensen
Ruhr University Bochum
philipp.mackensen @ruhr-uni-bochum.de

Veelasha Moonsamy
Ruhr University Bochum
email @veelasha.org

especially security-relevant component of smartphones is the
chipset. Chipsets consist of multiple, tightly integrated proces-
sors, some of which provide general-purpose compute to run
a mobile operating system, while others provide acceleration
features for graphics, or enable wireless connectivity. The
functionalities implemented by chipsets inherently put them in
an interesting position for an attacker, as chipsets, by design,
have access to sensitive information prior to encryption as well
as long-term cryptographic keys stored on the device.

As a result of the aforementioned exposure, threat actors
started to actively exploit chipset vulnerabilities. In 2023,
Amnesty International reported [3] that Predator, a commercial
surveillance spyware capable of extracting messages, online
browsing history, contact lists and location data from com-
promised phones, can be deployed through vulnerabilities
in Samsung chipsets - without interaction by the victim or
cooperation of the victim’s service provider. To minimize
the risk of being compromised, Amnesty International rec-
ommended that individuals at-risk should “Always update
[...] as soon as any security updates are made available for
your devices.” However, this recommendation assumes the
existence of device updates, which is dependent on the close
cooperation of several entities, as the vulnerability originates
from the chipset, rather than the device.

Chipset processors are closely intertwined with their soft-
ware, consisting of firmware, which runs on them, and the
drivers that create the interface to the Android OS. Chipset
processors, firmware and drivers are developed by chipset
manufacturers (CMs), rather than by smartphone manufac-
turers, i.e. Original Equipment Manufacturers (OEMs), nor
as a part of the Android Open Source Project (AOSP). This
means that the CMs need to continue to support and provide
updated firmware and drivers to OEMs over the lifetime of
a chipset, in particular, to mitigate security vulnerabilities.
The primary goal when dealing with such vulnerabilities is
to minimize the length of the vulnerability lifecycle, i.e., the
overall time frame a vulnerability is exploitable, by employing
successful vulnerability management across the supply chain.
For smartphone chipsets, this time frame is divided into four
phases: (i) the introduction of a vulnerability, (ii) its eventual
discovery, (iii) the development of a patch removing the
vulnerability by the CM, and (iv) packaging of the patch



into an update that is deployed to end-users’ smartphones by
the OEM. Each of these phases plays a significant role in
safeguarding device security, from both, a technical and an
organisational perspective. Each phase has a separate technical
impact, as they (i) influence which vulnerabilities a chipset
will be impacted by, (ii) where discovered vulnerabilities
are located, (iii) reveal how many chipset models a single
vulnerability affects and how severe vulnerabilities are, and
(iv) how many smartphones are ultimately affected.

While prior work suspected that some chipset vulnerabilities
tend to propagate across many generations [4], [5], along with
speculation that vulnerabilities in chipset firmware are more
severe than driver vulnerabilities [6], there is a significant
lack of empirical evidence to support these claims on a large
scale. Existing studies have primarily relied on limited case
studies or anecdotal evidence, leaving a considerable gap in
our understanding of the true prevalence and impact of these
vulnerabilities. Consequently, our work seeks to bridge this
gap by providing extensive empirical analysis, thereby offering
a more concrete foundation for future research and practical
security measures. More concretely our work aims to provide
a knowledge base enabling evidence-based choice of research
targets, more representative evaluations and a more accurate
depiction of the impact of discovered vulnerabilities.

Analogously to the technical characteristics, each phase of
the vulnerability lifecycle also encompasses important organ-
isational aspects, as they shine light on (i) the way chipset
firmware and drivers, including vulnerabilities, are developed,
(ii) the factors promoting the discovery of vulnerabilities,
(iii) patch development timelines, and (iv) inter-organizational
coordination between CMs and OEMs. These organizational
aspects have recently come under scrutiny, as both, a member
of Google’s Threat Analysis Group' and prior work [7] pointed
out that some critical chipset vulnerabilities were not resolved
within the 90 days responsible disclosure window, leaving end-
users in danger after the vulnerabilities have been publicly
disclosed. While such anecdotes highlight that vulnerability
management processes occasionally fail, it is unclear whether
this is a systemic flaw. The absence of a comprehensive,
large-scale measurement undermines the ability to generalize
observed process failures and suggest improvements of such
processes. This is not only relevant to CMs, but to the entire
security research community for two reasons: First, knowledge
about internal processes should influence the decisions made
by researchers when handling chipset vulnerabilities, such as
the vulnerability disclosure timeline. Secondly, insights and
suggestions for process improvements concerning the chipset
vulnerability lifecycle may be applicable to dependent product
categories where multiple companies must interact to discover
vulnerabilities, develop patches and deploy these patches via
device updates - such as IoT devices or connected vehicles.

To determine the technical and organizational characteristics of
the vulnerability lifecycle and identify potential for improve-
ments, we devise the following research questions:

Uhttps://twitter.com/maddiestone/status/1636469657136959488

RQ1: Where do vulnerabilities in chipsets originate?

RQ2: Who discovers vulnerabilities in a chipset?

RQ3: When are patches available and how severe are the
chipset vulnerabilities they mitigate?

RQ4: What are the characteristics of the update process
utilized by OEMs to address chipset vulnerabilities in Android
devices?

The current lack of information on the processes that take
place in every phase of the vulnerability lifecycle, preventing
us from answering our RQs based on prior work, is for two
reasons: Firstly, existing papers primarily focus on understand-
ing the final phase of the vulnerability lifecycle, in particular
investigating the availability of device updates, and various
factors that prolong the time it takes OEMs to provide these
updates. This leaves out other phases of the vulnerability
lifecycle. Secondly, existing studies focus on vulnerabilities
in, and updates for, the Android mobile operating system.
The sources from which they obtain their empirical data are,
however, lacking comprehensive information on chipset vul-
nerabilities. We make the following five main contributions:
- We create a unified knowledge base, the first of its kind,

aggregating comprehensive information on chipset vulner-

abilities, patches, affected devices, and their update status,
encompassing a majority of the Android smartphone ecosys-

tem (Section IV).

- We then leverage our large-scale knowledge base to obtain
answers to RQ1-4, discovering several key insights regard-
ing the origin of vulnerabilities in newly released chipset
models, limited industry transparency, and prolonged time
frames for patches and updates (Section V).

- We compare our findings to similar studies in other ecosys-
tems, highlighting similarities and differences. This allows
us to determine factors that influence various aspects of the
vulnerability lifecycle (Section VI).

- Given our results, we discuss several actionable changes that
stakeholders could implement to improve device security
and enable end-users to make informed purchase decisions
resulting from improved transparency (Section VII-B).

- Finally, we describe use cases on how our newly created
knowledge base can enrich and enhance future research
works. We elaborate how our data enables representative
experimental evaluations, provides a more accurate depic-
tion of the impact of newly discovered vulnerabilities, and
unveils promising avenues for research (Section VII-C).

We publish our data set in the form of a continuously

self-updating website at https://www.chipsets.org to enable

reproducibility, allow continuous observation of future trends,
and facilitate experimental evaluation.

II. BACKGROUND

A. Smartphone Chipsets

Smartphone chipsets, integral components of mobile de-
vices, are a set of specialized processors, responsible for
providing various functions essential for a smartphone’s op-
eration. These chipsets encompass a diverse set of compo-


https://twitter.com/maddiestone/status/1636469657136959488
https://www.chipsets.org

nents, including an application processor running e.g. An-
droid, graphics processing units (GPUs), modem processors
for wireless connectivity such as cellular, Bluetooth and WiFi,
and various other specialized co-processors. To enable end-
users to make calls, play audio over Bluetooth, or use the
GPU for gaming on their smartphone, a chipset-specific driver
within Android interfaces with these co-processors, delegating
tasks like wireless communication or graphics computation.
To this end, each co-processor executes a separate, chipset
model and component-specific firmware, independently from
Android. Furthermore, different components of chipsets often
communicate directly with each other, e.g., to synchronize
on radio frequency usage [8]. For this reason, as well as
for performance and energy conservation, modern smartphone
chipsets are typically manufactured in a tightly integrated way
by a single CM per chipset model, rather than each functional-
ity being supplied by a component of a different manufacturer.
[9]-[12]. The Android smartphone chipset market is therefore
effectively an oligopoly of four CMs: Qualcomm, Mediatek,
Samsung and Unisoc. These four companies cover 99% of
the smartphone chipset market [13]. Because of this relatively
small diversification, developing targeted exploits for specific
chipsets is economically viable for threat actors [14]. This
is even more of an issue, as the tight integration enables
adversaries to, e. g., exploit a vulnerability in a Bluetooth com-
ponent to ultimately eavesdrop on WiFi communication [8].
A holistic view on chipset vulnerabilities is thus warranted to
comprehensively understand the threat-landscape and security
posture of modern smartphones.

B. Vantage Points

There exists multiple vantage points from which one can
obtain information on vulnerabilities and available updates.

Vulnerability Databases: The NIST National Vulnerability
Database (NVD) and the CVE.org database, both operated
by the US government, contain mostly identical informa-
tion on vulnerabilities affecting arbitrary products, including
chipsets. Due to the generic nature of such databases, they
only contain a high level description of vulnerabilities, along
with a Common Vulnerability Scoring System (CVSS) severe-
ness score, which expresses the impact and exploitability of
a vulnerability. The NVD also includes Common Platform
Enumerations (CPEs) that, in theory, are intended to identify
software and hardware affected by a vulnerability. However,
not every chipset vulnerability is associated with a CPE. CPEs
of chipset vulnerabilities also only specify affected chipset
models, but not affected smartphone models.

Chipset Manufacturers: Bulletins on CM websites list
chipset vulnerabilities including affected model numbers,
severity ratings, and usually the same description that is also
later used in the NVD, as well as a CVSS score. They
also contain additional, chipset-specific information, such as
the component of the chipset that is affected by a particu-
lar vulnerability. CMs also acknowledge who discovered a
vulnerability, if the vulnerability was not discovered by one
of their employees. As each CM only publishes their own

vulnerabilities, the bulletin format is not standardised across
CM:s.

Android Open Source Project: AOSP security bulletins
provide detailed insights into vulnerabilities identified within
the Android OS, their severity levels, and affected Android
versions. These bulletins play a pivotal role in enhancing
transparency, as they contain a unique identifier, the Security
Patch Level (SPL). Each Android device also displays an
SPL in its settings dialog. By matching their devices’ SPL to
the corresponding AOSP bulletin, end-users can assess which
Android OS vulnerabilities have already received a mitigating
update, with vulnerabilities listed in bulletins not referenced
by the devices’ SPL being unmitigated. The Android Security
Bulletins are therefore both: A list of vulnerabilities affecting
devices, and a changelog representing which vulnerabilities
have been addressed. In some cases, these bulletins also con-
tain chipset vulnerabilities. However, AOSP security bulletins
do not allow to draw an immediate conclusion on which
chipset vulnerabilities a phone is vulnerable to, as this depends
on the exact chipset model built into this phone. Likewise, the
completeness of these bulletins w.r.t. chipset vulnerabilities
is unclear. Therefore, only taking into account AOSP security
bulletins in isolation is insufficient to obtain complete and
correct information on the chipset vulnerabilities affecting a
smartphone.

OEMs: 1In contrast to vulnerability databases and CM
bulletins, OEM information is communicated on a per-
smartphone, rather than per-chipset basis. OEMs either publish
device-specific changelogs on their website, listing all vulnera-
bilities that have been addressed in the past, or they refer to an
SPL in their changelog, consequently, ignoring vulnerabilities
missing from AOSP security bulletins. OEM changelogs are
thus insufficient to draw a conclusion on the security posture
of a smartphone, as they only list vulnerabilities that have
been already addressed, but do not enable an assessment of
vulnerabilities that have not received an update.

Unifying disparate information sources: To obtain infor-
mation on all chipset vulnerabilities affecting a smartphone,
one currently has to (i) obtain information which chipset
model is used in this smartphone, for instance from a separate
data sheet, (ii) determine which vulnerabilities affect the
chipset model based on AOSP, NVD, and CM information,
(iii) assess the patch status of the smartphone using OEM
changelogs and potentially the AOSP bulletin. Information
on chipset vulnerabilities is thus scattered across multiple,
disparate vantage points, necessitating a unified knowledge
base in order to shed light on the chipset vulnerability lifecycle
in Android smartphones.

C. Vulnerability Lifecycle

To systematically analyze the lifecycle Android chipset vul-
nerabilities, we adapt the linear timeline for generic software
vulnerabilities, originally proposed by Schneier [15], to the
Android chipset ecosystem as shown in Figure 1. We identify
the following four different phases, each aligning with one of
our RQs:



RQ1 Vulnerability introduction

RQ2 Vulnerability discovery >

RQ3 Analysis & patch
development

y RQ4 Update packaging, testing
& deployment

supplies patch

Security researcher

analyzed by % ? reports vulnerability

\ 4

il

ninin

Chipset manufacturer

OEM

AOSP security bulletin
NVD entry CVE NVD entry
Fig. 1. Lifecycle of chipset vulnerabilities in the Android ecosystem.

Vulnerability introduction (RQ1): The lifecycle starts with a
vulnerability being introduced into a component. Traditionally
many computer programs, such as web-browsers or Android
itself, follow a continuous development model, where new
features and, potentially, vulnerabilities are iteratively inte-
grated into a single “main” branch of source code, from which
software releases are derived [16], [17]. As a result, developers
of such software typically only support and enhance the latest
(few) version(s) of this branch. In contrast, chipset firmware
and drivers are often specific to each chipset model [4]. This
means that CMs might develop entirely new firmware and
drivers for chipsets at different price points, and for each new
chipset generation. For economical reasons, CM might also re-
use and adapt parts of the source code of chipset firmware and
drivers across different models. Information from NVD entries
and CM security bulletins enable assessing which chipset
models are affected by a vulnerability. Combining this with
information on chipset release dates enables a chronological
assessment of a vulnerability being introduced and potentially
persisting across chipset generations.

Vulnerability discovery (RQ2): Vulnerabilities are discov-
ered either by the chipset manufacturers themselves, or by
external third parties, such as bug-bounty hunters or academic
researchers. As typical techniques for vulnerability discovery
depend on the targeted component within the chipset, internal
and external security experts must decide upon which compo-
nent they target a-priori. This decision necessitates information
on the chipset threat landscape to make an informed decision.
Information about the discovery phase is available primarily
form CM bulletins, as that is the only vantage point providing
information on who discovered a vulnerability as well as the
affected component.

Vulnerability analysis & patch development (RQ3): After
the discovery of a new vulnerability, CMs must analyze its
potential impact and severity and develop a mitigating patch,
which they then supply to the OEMs. Finally, they publish
their analysis result in the form of a CVE (that in turn is also
analyzed by the NIST NVD team to assign a CVSS score),

TABLE 1
EXISTING STUDIES ON VULNERABILITIES AND UPDATES IN THE ANDROID
SMARTPHONE ECOSYSTEM, IN COMPARISON TO OUR STUDY.
O= NOT COVERED, ©= PARTIALLY COVERED, @= COVERED

Vantage points

Phases analysed
Prior Work |AOSP CVE NVD CMs OEMs|Intro Discov. Patch Update

Acar [7] [ e o O [} O O O [
Farhang [18]| @ [ ] O O [ ) O O

Hou [19] O ®e o O 0 © O O [
Jones [20] © o O O © O O O [
Vasquez [21]| @ [ ] [ ] O O O © [ ] O
Zhang [22] [ O O O 0 O O [ ©
Ourwok | ® ®© © © @ |® o o o

a security bulletin on their website, and, potentially, with the
next AOSP security bulletin.

Update packaging, testing & deployment (RQ4): When a
vulnerability has been discovered and the OEM has been
notified by the chipset manufacturer of a patch, the OEM must
assess which of their phones are affected by a vulnerability,
integrate driver patches into their version of Android, and
package them together with firmware patches into an update
that they then deploy to the phones in the hands of their
customers. The time frame required and rigor applied in these
processes is currently unknown, and thus there is currently no
single source of information comprehensively summarizing for
how long which phone has been exposed to a chipset vulnera-
bility, as OEM security bulletins only contain information on
mitigated, but not on unpatched chipset vulnerabilities.

III. RELATED WORK

Android smartphone updates: Previous research, as shown
in Table I, has primarily focused on the final phase of the
vulnerability lifecycle, specifically the deployment of Android
OS updates [18], [20] or device updates that include Android
and chipset firmware [7]. Hou et al. [19] focused on the final
phase of the vulnerability lifecycle of Android vulnerabilities,
but additionally discussed the first phase of the vulnerability
lifecycle, investigating who are the developers of vulnerable,



pre-installed apps. Linares-Vasquez et al. focused on the
second and third phase of the vulnerability lifecycle [21],
investigating how many vulnerabilities affect each Android
OS subsystem and how long it takes until vulnerabilities in
the kernel are addressed. Lastly, Zhang et al. [22] investigated
how patches propagate between Linux and different versions
of Android, observing that this process is prone to delays,
leaving devices exposed to kernel vulnerabilities for prolonged
durations. Notably, no prior work has focused on chipset
vulnerabilities or included all vantage points that are required
to gain a holistic picture of chipset vulnerability lifecycle,
with CMs’ websites websites being a common oversight.
Furthermore, the early phases of the vulnerability lifecycle
have not been studied comprehensively, as existing papers
mostly focus on its final phase.

Generic software: There exist studies that have investigated
the lifecycle of vulnerabilities in PC software [23]-[27]. Prior
work that studied whether vulnerabilities persist across several
versions of software have discovered that this heavily depends
on the kind of software at hand; for instance, web browsers
show very different characteristics compared to operating sys-
tems [23], [27]-[30]. There exist few studies investigating how
product security teams of software vendors fare in comparison
to external security researchers, exclusively targeting Firefox
and Chrome [31], [32]. When considering discoveries made by
external security researchers, the effectiveness of bug bounty
programs is an active research area [27], [33]. However, these
works typically investigate bug-bounty programs that have
a low barrier of entry by not requiring physical access to
devices, such as bug bounties on web applications. Results
of prior works might thus not translate to programs that
require access to a specific phone, such as bug bounties on
chipset software. Lastly, prior works on vulnerability analysis,
patch development, and update deployment processes studied
the reliability of vulnerability analyses [34]-[36], difficulties
in replicating vulnerabilities for verification [37], [38], and
update timelines [23], [32].

IV. METHOD
A. Data Collection

We collected vulnerability information from three indepen-
dent vantage points: (i) chipset manufacturer security bulletins
of Samsung, Qualcomm, Mediatek and Unisoc, (ii) NIST’s
NVD, and (iii) AOSP security bulletins. This allows us to
later uncover any inconsistencies, if present, between the three
sources when investigating our research questions. We only
consider vulnerabilities of those chipset models that include
at least the two basic components required to build a cellular
phone, i.e., an application processor, running Android, and a
cellular modem. Vulnerabilities in other components of such
chipset models are also in scope. We list all components
in Section B. This results in information on 3,676 different
vulnerabilities across 437 chipset models, released between
September 2009 and April 2024. Our dataset thus includes
chipset and vulnerability information on all relevant CMs,
resulting in a market coverage of 99% [13].

We aim to cover a diverse set of OEMs, while ensuring
that our analysis results are not heavily skewed by legacy
information. To avoid introducing a negative bias from defunct
OEMs who have stopped updating their devices, we only
included OEMs who have released a new smartphone model
since the beginning of 2022. Querying GSMArena?, a website
that independently curates information on smartphones, based
on this criterion resulted in smartphone to chipset mappings
and release date information covering 6,866 smartphone mod-
els made by 38 OEMs. Notably, only four out of 38 OEMs
(Samsung, Google Pixel, Tecno, and Fairphone) provide com-
prehensive changelogs of all their devices on their websites,
with a third-party website offering data for Xiaomi. Three of
these OEMs rank among the top four in Q2 2023 Android
smartphone sales [39], while Google Pixel and Fairphone have
negligible market shares [40], [41]. We therefore also include
information on 16,139 device updates - covering individual
device updates as well as information from OEM Security
Response Centers - for all smartphone models manufactured
by Samsung, Tecno, and Xiaomi into our dataset. Our data
thus covers the majority of the Android market regarding
information on which chipset is used in which phone, as well
as device update information [39]. Additional technical details
of this process are described in Section A, with Table IV
providing a summary of vantage points.

B. Data Augmentation

Since the scope of our RQs requires information that goes
beyond the data immediately contained within the vantage
points, we augment our dataset by inferring additional infor-
mation before aggregating all collected information into a

Affected Component: Chipset manufacturers do not pro-
vide information on which component was affected by a
vulnerability that uses consistent names throughout different
manufacturers. Instead, CMs often refer to components by
internal marketing or code names. For instance, the Trusted
Execution Environment (TEE) used in Mediatek chipsets is
called ’Kinibi’, while Qualcomm refers to their TEE as
"QSEE’. For this reason, we identified a set of such key terms
for each component based on source code fragments, data
sheets, and marketing material published by each CM. We then
use these key terms to automatically identify a vulnerability’s
component based on information provided in CM security
bulletins, normalizing to a common component name that
we use across all CMs (e.g.,’Trust’ in the example above),
according to the list in Appendix Section B.

Vulnerability Location: The location specifies whether the
vulnerability is located within a driver executing as a part
of Android, or if it the vulnerable code is contained in the
component’s firmware, executing on a separate CO-processor.
We identify a vulnerability’s location using the same approach
as we use for components.

External reports: Only Qualcomm explicitly distinguishes
between external and internal sources in their security bul-
letins, while Mediatek, Unisoc, and Samsung credit external

Zhttps://GSMArena.com


https://GSMArena.com

discoverers, but not their own employees, by name for each
vulnerability if the researcher consents to this. Vulnerabili-
ties with named discoverers are, therefore, always external
discoveries. Depending on how many external reporters want
to remain anonymous, the true number of externally found
vulnerabilities might be higher than the estimated heuristic
for Samsung, Mediatek, and Unisoc. As we will see in
Section V-B1, this possible under-approximation does not
invalidate but strengthens our empirical results.

Knowledge Base: Afterwards, we build our knowledge base
by combining information from various vantage points to
fit the canonical schema illustrated in Figure 10 (Appendix
Section C). To do so, all collected and augmented data is stored
in a relational database. We link individual data points using
common identifiers, such as CVE IDs for vulnerabilities or
model numbers for chipsets. This allows us to correlate and
compare information obtained from different vantage points.

V. EMPIRICAL ANALYSIS
A. RQI: Vulnerability Introduction

| Where do vulnerabilities in chipsets originate?

Vulnerability origin Vulnerability persistence

New code 7% 99 | Discovered &
Removed
Current
- chipset model
Previous Future
chipset models 93% 91% chipset models

Fig. 2. Origin and persistence of discovered vulnerabilities in the average
chipset model. Arrows symbolize the direction in which vulnerabilities
propagate.

1) Vulnerability origin: To assess if vulnerabilities intro-
duced through code re-use from previous chipset generations
outweigh newly introduced ones, we measure the amount of
vulnerabilities that have been newly introduced into every
chipset, and compare this to the amount of all vulnerabilities
affecting each chipset. To do so, we utilize the information
about which chipsets are affected by a vulnerability, as pub-
lished in CM security bulletins and NVD entries, combined
with the release date of each chipset. We associate each
chipset ¢ € C' with a set of vulnerabilities V' (c) that affected
the chipset, and the chipset’s release date Ti(c). Then a
vulnerability v has been newly introduced in chipset c iff.
Ve € Cl(v e V() = Tra(cd) > Tra(c)).

We observe that each chipset c is affected by |V (¢)| = 204
vulnerabilities on average, with a median of 149. However,
on average, only 7% of the vulnerabilities affecting a chipset
have been newly introduced in a particular generation of
chipset models, while 93% of vulnerabilities are inherited from
previous generations, as shown on the left side of Figure 2.
In the median case, a new chipset model does not introduce
any new vulnerabilities. Thus, the distribution is heavily
skewed, and there are a few chipset models that, upon release,
introduce the majority of new vulnerabilities. The primary

origin for vulnerabilities in newly released chipset models are
thus vulnerabilities inherited from previous chipset generations
through code re-use, rather than new vulnerabilities, which
only occur in very specific chipset model releases.

We also found that the introduction of support for new
cellular, WiFi or Bluetooth protocols does not always lead
to the highest percentage of newly introduced vulnerabilities.
Instead, we observe that chipset models supporting identical
protocols have vastly different shares of newly introduced
vulnerabilities. For instance, we discovered that Qualcomm’s
SMB8475 chipset exhibited 21% newly introduced vulnerabili-
ties, surpassing the 6% found in its predecessor, the SM8450,
despite both supporting the same cellular, WiFi and Bluetooth
protocols. In comparison, Qualcomm’s first 5G supporting
chipset models SM4350 (7.5%), SM8150 (8%) and SM8350
(13.5%) also exhibit a smaller share of newly introduced vul-
nerabilities than the SM8475. The same holds for other CMs:
18% of the vulnerabilities in Mediatek’s MT6889, released in
the first quarter of 2020 and their first model to support 5G,
were newly introduced. The MT6762, only supporting LTE
and released in 2018, a time when LTE was already widely
adopted, saw a comparable rate of 17.5% of new vulnerabili-
ties. Therefore, we suspect that, while the introduction of 5G
led to above-average rates of newly introduced vulnerabilities,
similar percentages of newly introduced vulnerabilities can be
likewise caused by internal changes made by the CM.

2) Vulnerability persistence: We determine whether vul-
nerabilities persist from one chipset generation to the next.
Formally, if Tuch(v) is the date at which vulnerability v has
been patched, we consider v to persist into chipset c iff v was
not newly introduced in ¢ and Tiei(c) < Tpacn(v) Av € V()
holds. We find that, on average, only 9% of vulnerabilities
of a chipset model are removed before the release of the
next chipset model by the same CM (Tii(c) > Thaen(v)),
while 91% of vulnerabilities persist (Trei(c) < Thaen(v)), as
shown on the right side of Figure 2. The distribution is heavily
skewed, as in the median case no vulnerabilities are removed.
Combined with our previous results, we observe a decreasing
trend in the amount of vulnerabilities in chipsets: On average,
each new chipset generation leads to the addition of 6% of new
vulnerabilities, while 9% of the vulnerabilities are removed.

Summary RQ 1: Vulnerability introduction

Observations:

o For new chipset models, 93% of vulnerabilities are
inherited from previous chipset generations, rather
than newly introduced by novel features.

o On average, new chipset models tend to exhibit less
vulnerabilities than the previous generation, as there
are fewer vulnerabilities introduced than discovered.

New insight:

o Vulnerabilities affecting cutting-edge chipset models
may be found by testing legacy devices, demonstrat-
ing that it is often-times unnecessary to acquire new
devices to find practically relevant vulnerabilities.




B. RQ2: Vulnerability Discovery

| Who discovers vulnerabilities in a chipset?

1) Growth in vulnerability discovery: We depict the amount
of newly assigned CVEs per chipset manufacturer and year in
the bar-chart of Figure 3. Overall, we notice that the amounts
of yearly discovered vulnerabilities affecting Qualcomm and
Samsung chipsets have stayed constant since 2018, while
Mediatek and Unisoc chipsets have seen a significant increase
in discovered vulnerabilities. At the same time, we see that
Mediatek and Unisoc discover almost no vulnerabilities inter-
nally, as illustrated by the line-chart in Figure 3. The growth in
absolute numbers of discovered vulnerabilities for both CMs
is thus driven by increased scrutiny from external researchers.
We see two potential reasons for this increase in external
discoveries: First, while Samsung’s and Qualcomm’s market
shares have stayed the same, Mediatek and Unisoc signifi-
cantly increased their market shares in the period from 2018
to 2023 [2], likely attracting more research on their products.
Second, while Samsung and Qualcomm have maintained bug
bounty programs since 2017 [42], [43], Mediatek and Unisoc
vulnerabilities only became eligible for bug bounties in 2023
[44], [45], potentially further incentivizing external researchers
to discover vulnerabilities in their products.

2) Internal discovery rates: In 2023, the products of Medi-
atek and Qualcomm were both eligible for similar bug bounties
[43], [44], and for both CMs around 300 vulnerabilities were
published. However, based on the information in CM security
bulletins, Qualcomm was able to discover 57% of these
internally, while Mediatek only found 10% internally. Even
more strikingly, Unisoc published 465 vulnerabilities, of which
they found only around 7% internally. One would expect that
the ratio between internal and external discoveries would be
roughly equal for all CMs, as long as there are no external
factors (e. g., bug bounties) that would pull external researchers
more towards particular CMs. There are two potential reasons
for the observed discrepancy between CMs: Either, Mediatek
and Unisoc indeed almost never find vulnerabilities internally,
or they find more vulnerabilities internally than they publicly
disclose. We also observe a positive trend: Samsung’s ratio
of internally discovered vulnerabilities has more than doubled
from 25% in 2022 to 60% in 2023. Although it might be an
outlier, as was 2020, this spike could be caused by increased
scrutiny following critical vulnerabilities uncovered by Google
Project Zero [46] and Samsung’s establishment of a dedicated
chipset product security team in 2023 [47].

3) Number of discovered vulnerabilities by component: To
understand if the probability of discovering a new vulnerability
differs between a chipset’s components, we group the number
of discovered vulnerabilities by component and manufacturer.
The result is shown in Table II. Most vulnerabilities are
discovered in cellular connectivity followed by WiFi and
GPUs. This holds true when looking at all manufacturers
combined, as well as for every manufacturer independently,
except for Samsung. Table II also allows us to determine the

TABLE I
NUMBER OF TOTAL VULNERABILITIES GROUPED BY COMPONENT AND
MANUFACTURER. PERCENTAGE OF INTERNALLY DISCOVERED
VULNERABILITIES SHOWN IN PARENTHESIS.

Chipset p t S g Qual Unisoc Mediatek  Total
Cellular 54 (57.4%) 305 (784%) 173 (13.9%) 70 (20.0%) 602
WiFi 4(0.0%) 356 (59.3%) 91 (1.1%) 111 (13.5%) 562
GPU 21 (23.8%) 254 (58.7%) 26 (0.0%) 107 (5.6%) 408
Trust 29 (37.9%) 186 (79.6%) 2 (0.0%) 42 (31.0%) 259
Audio 0() 90 (53.3%) 11 (0.0%) 19 (47.4%) 120
Vision 2 (0.0%) 39 (51.3%) 20 (5.0%) 40 (10.0%) 101
Bluetooth 3 (66.7%) 53 (56.6%) 7 (0.0%) 22 (13.6%) 85
Debug 3(0.0%) 32 (50.0%) 24 (4.2%) 15 (0.0%) 74
Boot 12 (83%) 37 (48.6%) 0(¢) 16 (18.8%) 65
IPC 1 (0.0%) 33 (84.8%) 0(-) 29 (24.1%) 63
Machine learning 10 (30.0%) 10 (10.0%) 1 (0.0%) 41 (2.4%) 62
Position 0() 18 (61.1%) 4 (25.0%) 17 (0.0%) 39
Memory management 3 (33.3%) 7 (57.1%) 3 (0.0%) 24 (12.5%) 37
Power 0() 6 (83.3%) 17 (0.0%) 11 (36.4%) 34
Virtualization 1 (100.0%) 11 (72.7%) 0(-) 2 (50.0%) 14
NFC 0() 4 (75.0%) 00) 00) 4
Total 143 1,441 379 566 2,529

components in which chipset manufacturers’ internal security
teams are predominantly discovering vulnerabilities. We ob-
serve that, similar to the overall discovery rates, Qualcomm
and Samsung surpass the internal discovery rates of Mediatek
and Unisoc on almost all components, underlining that their
internal discovery rate is universally higher.

Summary RQ 2: Vulnerability discovery

Observations:

o The amount of internally and externally discovered
vulnerabilities vary greatly between CMs, with two
CMs discovering less than 15% of reported vulnera-
bilities internally.

o There exists a large disparity in number of discovered
vulnerabilities between components, with cellular and
WiFi vulnerabilities being discovered most frequently.

New insights:

o Independent bug bounty hunters, security research
companies and academic researchers, rather than in-
house product security teams, appear to be the driving
force behind vulnerability discovery in the chipsets of
some CMs.

o The increase in discovered vulnerabilities in recent
years is due to external researchers targeting more
CMs, rather than improving techniques for a single
CM’s chipsets. This suggests that adapting existing
techniques to additional CMs’ products is more ef-
fective than refining techniques for one CM.

C. RQ3: Vulnerability Patching

When are patches available and how severe are the chipset
vulnerabilities they mitigate?

1) Vulnerability severeness in firmware and drivers: It has
previously been speculated that vulnerabilities in firmware,
running on chipset processors outside of the Android OS, are
more severe than vulnerabilities in drivers. Prior work argues



100%
5%
50%
25%

0% - —

—— Samsung
—o— Qualcomm
—4— Unisoc

Mediatek

% vulns disc. internal.

1400 %
E‘
s
1200 2
=
B3
T._—-—E— ,O

| | | |
2015 2016 2017 2018

|
2019

\ \ \
2020 2021 2022 2023

Year of CVE assignment

Fig. 3. Vulnerabilities published per year per CM. Bars show the total number of published vulnerabilities, lines show the fraction of vulnerabilities discovered

internally by each CM.

Driver - ——H [

Firmware |-

4 5 6 7 8 9 10
Vulnerability severity (CVSS)

Fig. 4. Severity distribution of firmware and driver vulnerabilities. Severity
information is based on NIST analysis.

that this is because drivers, interfacing with chipset processors
from inside Android, inherit security features from Android,
which firmware does not [6]. We now validate whether this
claim can be verified empirically by comparing severity scores
of driver and firmware vulnerabilities in Figure 4. While
the most severe vulnerabilities of firmware and drivers are
capable of enabling a whole system compromise, we observe
that the medians of both populations differ, with firmware
vulnerabilities showing a median that is 0.8 CVSS points
higher than driver vulnerabilities, implying that, on average,
firmware vulnerabilities are indeed more severe than driver
vulnerabilities. We confirmed this statistically significant dif-
ference at p = 0.05 using a Kruskal-Wallis test.

2) Time until patch availability: To verify how long it
takes chipset manufacturers to develop a patch and provide
it to OEMs, we compare the date Tiepor(v) a vulnerability
v has been (externally) reported to the date the chipset
manufacturer notified the OEM and provided a patch, or
they published the vulnerability on their website Tpucn(v).
Here we are particularly interested in whether the industry-
standard 90-day responsible disclosure period is adhered to,
i.e., Tpaich (V) —Trepor (V) < 90 days. As evident from Figure 5,
neither Qualcomm nor Samsung can consistently meet the 90-
day responsible disclosure deadline. Within 90 days, Samsung
has patched 46.9%, while Qualcomm has patched 19.9% of
vulnerabilities reported by external researchers. Instead, Sam-
sung requires 185 days to address 95% of their vulnerabilities.
For Qualcomm, the discrepancy is even more significant, as
they require 348 days to supply patches for 95% of their
vulnerabilities. Even more worrisome, we observe that a few
remaining outlier vulnerabilities required several years to be
addressed. There is no strict correlation between the affected
component and the time it takes to develop a patch. Interest-

ingly, our data also shows there is no meaningful correlation
between vulnerability severity and patching time frame. This
leads us to conclude that high severity vulnerabilities are
seemingly not prioritized.

3) Information availability and consistency: After a patch
has been developed, information on the vulnerability is pub-
lished by CMs. To verify whether all vulnerability infor-
mation sources provide the same coherent information, we
first compare where vulnerabilities are being published and
then assess if the information across all sources is identical.
This is important, as inconsistent information on the same
vulnerability might lead to confusion and a misjudgement
of a vulnerability’s severity by OEMs, researchers, and end-
users. To do so, we leverage the fact that our knowledge base
aggregates information from the NVD, CM’s, and the AOSP
in directly comparable structure, including publishing dates.

Availability: First, we assess if manufacturers reliably pub-
lish vulnerabilities on all three platforms. Our goal is to
capture a recent, rather than a historical, picture of the vulner-
ability publication practises. Over our entire data set, we found
that one year is sufficient time to propagate between vantage
points for 99.9% of all vulnerabilities that are eventually
included in all vantage points. We therefore base our report
on vulnerabilities published in the time frame from June 2022
to May 2023, such that the vulnerabilities published in May
2023 had until April 2024, i.e., one year, to propagate to
all vantage points. Vulnerabilities that have not reached all
vantage points within this time frame are, according to our
data, extremely unlikely to propagate at all (< 0.1% of cases).
The result of this measurement is shown in Figure 6. From this
chart, it becomes clear that vulnerabilities published on chipset
manufacturer websites are almost always also published in
the NVD, and only very few Samsung vulnerabilities are
missing from the NVD. Notably, no vulnerabilities are missing
from the CM websites, i.e., vulnerabilities published in CM
security bulletins are a superset of the vulnerabilities published
via all other vantage points. However, we notice that Unisoc
and Mediatek publish less than 25% of chipset vulnerabilities
in AOSP security bulletins, and Samsung has not published
any vulnerability in the AOSP bulletins. The AOSP security
bulletins thus are incomplete, and must be augmented with
CM (or NVD) website information to gain a holistic picture
on which vulnerabilities affect a smartphone.



] Samsung N ‘
600 | Qualcomm
—— 90 days deadline

>

400 - R

Time from disclosure to patch (days)

Date of disclosure to OEM

Fig. 5. Time frame from vulnerability disclosure to patch availability, each marker representing a single vulnerability. Graph cut-off at y = 700 days for
readability. Mediatek and Unisoc are excluded due to missing discovery date information.

NVD CM Website

& 100 [

= 50

2 ol -
Samsung  Qualcomm Unisoc Mediatek

Chipset manufacturer

Fig. 6. Comparison of vulnerability information availability.

Consistency: As described in Section II-C, not only is the
severity of a vulnerability analyzed by the chipset manufac-
turer but also by NIST, which assigns a CVSS score inde-
pendently. This analysis by NIST has recently been criticized
for exaggerating the severity of vulnerabilities in open source
projects [48]-[50]. However, out of the 2,249 vulnerabilities
for which we obtained a CVSS severeness rating from the
CMs’ websites as well as from NIST, we observe that for 10%
of these vulnerabilities NIST assigned a lower severity than the
CM, and in 15% of the cases NIST assigned a higher severity.
In the realm of chipset vulnerabilities, our data thus does not
support the aforementioned criticism that NIST systematically
exaggerates severities.

Summary RQ 3: Vulnerability patching

Observations:
o On average, vulnerabilities in chipset firmware are
more severe than driver vulnerabilities.

o The 90-day responsible disclosure period is commonly
not adhered to by Qualcomm and Samsung.

o Vulnerability information is often missing from
monthly AOSP security bulletins.

New insights:

o A 90-day disclosure period is inapplicable to vulner-
abilities in chipset drivers and firmware, given that it
is violated on a regular basis. Researchers should not
rely on vulnerabilities being addressed within 90 days
to assess when to publicly disclose vulnerabilities.

o AOSP security bulletins lack comprehensive infor-
mation on chipset vulnerabilities. This could mis-
lead users and researchers alike to underestimate the
amount of vulnerabilities affecting a device.

D. RQA4: Vulnerability Updating

What are the characteristics of the update process utilized
by OEMs to address chipset vulnerabilities in Android
devices?

1) Number of affected smartphones: The amount of smart-
phone models affected by a chipset vulnerability v is de-
termined by two factors: (i) how many chipset models are
affected by the vulnerability |{c € Clv € V(c)}| and (i)
the amount of smartphone models s € S that contain one of
these affected chipset models. Assuming that B(s) = c iff.
smartphone model s uses chipset model ¢, then the number
of smartphones affected by v is [{s € S|v € V(B(s))}|. We
illustrate the resulting number of affected phones per vulner-
ability and CM in Figure 7. Overall, the median number of



affected phones per Mediatek vulnerability (652 phone mod-
els) is significantly higher than per Qualcomm vulnerability
(277 phone models). Similarly, the most widespread Mediatek
vulnerability affected 2,222 smartphone models, while the
most prevalent Qualcomm vulnerability affected 1730 smart-
phone models. In contrast, vulnerabilities affecting Samsung or
Unisoc chipsets generally affect the fewer different smartphone
models. This is because Samsung predominantly produces
chipsets for use in their own smartphones, as well as very few
smartphone models made by HTC, Meizu and Motorola. This
limits the amount of potentially affected smartphone models
to approximately 450. Likewise Unisoc, being a relatively
new CM, only produces chipsets for use in 277 different
smartphone models, although supplying to 23 different OEMs.

[
Unisoc

Samsung
Mediatek
Qualcomm
\

0

T T T T
500 1,000 1,500 2,000
Number of affected smartphone models
Fig. 7. Number of affected smartphones by a vulnerability, per CM.

These results show that a single vulnerability usually has
quite drastic ripple effects, as it typically affects multiple
chipset models through code re-use (cf. Section V-A), that
are used in a variety of smartphone models. The extent of this
effect depends on the CM of the chipset.

2) Update availability: CM’s may release security advi-
sories containing vulnerability information before OEMs have
packaged the patch for the published vulnerabilities into a
smartphone update. This would enable threat actors to analyse
the, now publicly known, vulnerability and potentially use this
information to built exploits, putting the security of end-users
at risk. To quantify this risk, we assess how many vulnerabil-
ities in our dataset seem to have never been mitigated by an
update and may still affect devices. All of these vulnerabilities
fulfill the following criteria:

« affect at least one smartphone model for which we have
update information
are never included in any update changelog, or AOSP
security bulletin referenced by an update changelog
published after at least one phone with an affected
chipset, for which we have update information, has been
released
published before January 2023, to give smartphone man-
ufacturers on a bi-annual update schedule enough time to
provide an update

Only 951 (60.2%) out of 1,546 vulnerabilities matching
these criteria have received at least one mitigating update.
For the remaining 631 (40.8%) vulnerabilities, affected users
cannot assess whether their devices are still exposed.

3) Update timeline: For the vulnerabilities that have been
addressed by updates, we assess for how long end-users have
been at risk before an update has been available for their

devices. To this end, for every vulnerability addressed by
a device update, we calculate the time from vulnerability
announcement on the chipset manufacturer’s website until the
corresponding update became available. Formally, we define
Toem(v, s) as the point in time when an OEM has released
an update containing the patch that mitigates vulnerability v
in smartphone s, and then compute Togm (v, 5) — Tpacn(v) for
all (v,s) € SxV with v € V(B(s)). We analyzed all 24,226
pairs of vulnerabilities and affected smartphones (v, s) in our
knowledge base. The majority of phones will receive an update
in under 3 months after a vulnerability is published, as 25%
of affected smartphone models have received an update within
44 days after a vulnerability has been published, and within
71 days 50% have received updates. However, we observe
that updates are sometimes heavily delayed, with the 95%
quantile at 266 days. We also observe that updates for the same
vulnerability do not reach all smartphones at the same time.
Instead, the median of the interval between the first phone
model receiving an update and the last affected phone model
receiving an update max, scs Toem(v, s) — Topm(v, s') is at
182 days. When we compare the median interval between the
first phone model to receive an update, and half of all phones
having received an update, we observe a 32 day delay.

Our study thus illustrates two things: First, the update
process is not well coordinated between OEMs and CMs, as
the CMs publicly announce the existence of a vulnerability
before OEMs are able to provide an update to end-users. This
allows threat actors to analyze published vulnerabilities, using
the time-frame between vulnerability publication and update
availability for exploitation. Secondly, it shows that the update
process is fragmented, as not all phone models receive an
update at once. This could enable threat actors to obtain an
update of a phone model that received a timely update and
analyze it to gain additional information on exploitability of
phone models that are yet-to-receive updates.

Summary RQ 4: Vulnerability updating

10

Observations:
o A single vulnerability typically affects hundreds to
thousands of different smartphone models.

o 41% of vulnerabilities affecting devices in our knowl-
edge base are never addressed in any changelog.

o Updates reach end-users with a median delay of 71
days after vulnerability publication, with some updates
being delayed by more than 8 months.

New insights:

o End-users are left in the dark regarding a large amount

of chipset vulnerabilities, which are seemingly never

mitigated via an update.

Vulnerability announcements by CMs and update

availability by OEMs are not well coordinated. This

leaves users at risk, when a CM publicly announces a

vulnerability, but the OEM takes another 2-8 months

to provide an update to end-users.




VI. COMPARATIVE ANALYSIS

We now compare our findings to the results of similar
studies in other domains, highlighting key differences, the
importance of a better understanding on vulnerability man-
agement of chipsets and the gaps that our proposed unified
knowledge base fills.

A. Vulnerability Introduction

In our analysis, we found that code re-use is the primary
origin of chipset vulnerabilities. As shown in Figure 8, code
re-use commonly leads to the introduction of vulnerabilities
in other ecosystems as well. However, chipset firmware and
drivers seem to be particularly prone to this, as their percentage
of vulnerabilities from code re-use follows closely those of
Firefox [28] and OpenJDK [27]. Firefox however follows a
rapid release development paradigm, with a new version re-
leased every four weeks [16], limiting the amount of potential
code changes that can be made in this short time frame. In con-
trast, chipset development operates on a longer cycle, typically
releasing new generations annually with derivative versions
appearing every few months. Notably, chipset firmware and
drivers are the closed-source products exhibiting the highest
proportion of vulnerabilities due to code re-use, compared
to Android apps [30], closed-source PC software [29], and
Microsoft Windows [31]. This implies that transitions between
versions in closed-source products often result in distinct
sets of vulnerabilities for each version. In contrast, chipset
firmware and drivers seem to often inherit vulnerabilities,
potentially due to chipsets’ necessity for backward compat-
ibility with older specifications, such as cellular, Bluetooth,
or WiFi standards. This need for compatibility mirrors that
of programming languages like Java (OpenJDK) and PHP,
presumably explaining the similarity in vulnerabilities related
to code re-use.

1 ‘9"—
194 -
193 |-

Firefox [28] |

OpenJDK [27]

Smartphone chipsets |
Open-source PC software [29] ] 83 =
PHP language [27] | 1 79 -
Closed-source PC software [29] o 59 —
Android Apps [30] [y 59 -

Windows Server 2008 [23] o 49 =
Windows 7 [23] 1 32 ‘ s

0 50 100

% vulnerabilities caused by code re-use

Fig. 8. Prevalence of vulnerabilities inherited from previous software versions
through code re-use.

B. Vulnerability Discovery

Most affected components: As illustrated in Table II, we
found that most vulnerabilities in chipset models are discov-
ered in the cellular modem, followed by WiFi, GPU and trust
related functionality. In their study on vulnerabilities in the
Android ecosystem, Linares-Vasquez et al. [21] reported that

11

most vulnerabilities found in Android drivers stem from the
GPU, WiFi or the camera subsystem, with the cellular modem
and trust components never being mentioned. We suspect that
this is because the authors obtained their information from
the AOSP bulletins which, as we showed in Section V-C3,
lack information on the majority of chipset vulnerabilities.
Prior work therefore severely underestimated the amount of
vulnerabilities in various chipset components, such as cellular
modems or trust-related components. In contrast, our knowl-
edge base incorporates information from multiple vantage
points, enabling us to compile a comprehensive statistic of
affected components.

Internal versus external discovery: In Section V-Bl, we
observed that Mediatek and Unisoc find less than 15% of
vulnerabilities in their products internally. Compared to web
browsers, another type of high-risk targets, this rate of inter-
nally discovered vulnerabilities appears to be strikingly low.
Sivagnanam et al. [31] measured that 56% of all Chromium
vulnerabilities are found internally by the Chromium develop-
ment team, Google employees or automated processes. Simi-
larly, Atefi et al. [32] find that 69% of all Firefox vulnerability
reports come from the Firefox development team internally,
rather than external researchers. This shows that, rather than
Qualcomm and lately Samsung having an outstandingly well
performing internal security team, Mediatek and Unisoc seem
to be under-performing w.r.t. internally discovered vulner-
abilities, compared to other high-impact and high-exposure
product categories, such as web browsers.

Impact of bug bounties: Several studies [27], [33] have
shown that in general, the establishment of bug bounty pro-
grams leads to an initial increase in discovered vulnerabilities
for products covered by the bounty, followed by a decline
in discovered vulnerabilities. The authors argue that this is a
sign of increasing code quality, as it becomes harder for bug-
bounty hunters to discover vulnerabilities. Given Qualcomm’s
and Samsung’s bug bounty programs have existed for 6 to 8
years, one would expect to see a similar decrease in discovered
vulnerabilities in their products. However, the amount of
vulnerabilities discovered in Qualcomm chipsets is constant,
while the quantity of discovered vulnerabilities for Samsung
chipsets is following an increasing trend. Therefore, it seems
that the current bug-bounty programs run by CMs do not
significantly reduce the amount of chipset vulnerabilities. We
suspect that this might be due to two factors. First, discov-
ering vulnerabilities in chipsets commonly requires access to
hardware for testing purposes (smartphones, software-defined
radios etc.), a requirement that does not apply for almost
all other software in bug bounty programs and might deter
bug hunters. Secondly, chipset vulnerabilities are relatively
valuable to parties competing with bug bounty programs for
the attention of qualified security researchers, such as exploit
brokers. For instance, Zerodium pays up to 200,000 USD for
a remote code execution vulnerability in a cellular modem, or
up to 100,000 USD for a remote code execution vulnerability
in a WiFi component [14].



C. Patch Development

In Section V-C2 we found that Qualcomm and Samsung
are, on average, able to provide patches for discovered security
vulnerabilities within the 90-day responsible disclosure period.
This, again, is in stark contrast to the browser ecosystem. On
average, the Firefox and Chrome developer teams are able to
develop a patch even within 80 days or less [32], demonstrat-
ing that the 90 days disclosure period is not entirely unrealistic
in other ecosystems. Even more strikingly, Zhao et al. [33]
report that 50% of vulnerabilities reported via bug bounty
programs in the web ecosystem are patched within 7 days. In
fairness to the CMs, there are several additional steps in the
patch development process of chipsets, compared to browsers
or web applications: Web browsers or websites do not have
do undergo integration tests for hundreds of different phone
models, as they typically only target a handful of operating
systems. They also do not have to potentially undergo the same
regulatory (re-)certification for radio emitters and protocol
compliance that chipsets do. Nonetheless, this highlights that
patching chipset vulnerabilities takes significantly longer than
patching other high-value targets.

D. Updates

Web browsers and operating systems: As illustrated in Sec-
tion V-D3, OEMs require 52 days to supply 50% of affected
smartphone models with an update after a vulnerability has
been published by a CM. This sharply differs from other types
of software. Shazat et al. [23] found that 96% of Chrome and
58% of Firefox vulnerabilities receive a mitigating update on
the day they are published, while Microsoft and Apple are able
to immediately provide updates for their operating systems for
76%-T78% of the vulnerabilities they publish. We conclude that
the additional 52 days required by OEMs are due to the supply
chain from CM to OEM that does not exist for web browsers
or operating systems, where the party developing a patch is
also packaging the patch into an update.

Android updates: When comparing our findings to prior
work on Android device updates, we observe that prior work
has been underestimating the amount of vulnerabilities im-
pacting a smartphone. Acar et al. [7] have highlighted, as
part of a case study, that the Qualcomm SMS8350 used in
the Samsung Galaxy Z Fold3 5G phone suffers from 11
chipset vulnerabilities. However, in their study, the NVD
CVE database was used as the sole source, where only one
of two possible CPE identifiers to filter for CVEs affecting
the SM8350 was employed. Our unified knowledge base
reveals that this chipset is actually affected by, at least, 131
vulnerabilities, an increase by more than a factor of 11. This
highlights the relevance of cross-validating information from
several vantage points, thus validating our proposal for the
need to consolidate all the information in one single place.
Prior work on Qualcomm chipset vulnerabilities [18] also
found that, while some Qualcomm chipset vulnerabilities are
never resolved in specific phones, every CVE is at least
addressed by one OEM. In contrast, we observe that for 43%
of CVEs no OEM publishes an update, and thus highlight

12

that the situation has been previously underestimated. A large
contributing factor to this underestimation is that Samsung,
Unisoc and Mediatek - absent from studies in prior work -
only report very few of their vulnerabilities in AOSP security
bulletins. However, in the updating phase of the vulnerability
lifecycle OEMs rely heavily on these AOSP bulletins to
communicate which vulnerabilities have been addressed in
their devices, and thus the absence of chipset vulnerabilities in
AOSP bulletins results in missing information for end-users.

VII. DISCUSSION
A. Changes in the Android ecosystem

We observe two primary ways in which chipsets directly
impacted security-relevant changes in the AOSP within the
last years. First, the Android version developed by the AOSP
is heavily customized by the CMs and OEMs to run on the
devices’ chipset. Prior to Android 8, every Android update
had to be customized for each phone model, such that it
properly runs on the respective phone model’s chipset. As
our results show, resolving 95% of all chipset-related security
vulnerability takes OEMs and CMs between 180 days and
a full year. To reduce the dependence of Android system
updates on CMs, the APIs that are used within the chipset-
specific customizations have been gradually standardized since
Android 8 [51]. This decoupling allows OEMs to deliver
Android updates without waiting for CMs to adapt the new
version to the chipset, accelerating deployment of general
Android system updates.

Secondly, AOSP offers to include vulnerabilities affecting
chipsets into the Android Security Bulletins to mitigate some
of the heterogeneity and offer users a CM and OEM in-
dependent way of assessing the patch level of their device
[52]. According to our knowledge base, 35% of all chipset
vulnerabilities were included in AOSP security bulletins in
2019 and the inclusion ratio rose to 59% in 2021, but has
since declined to 25% in 2023. This drop is caused by increas-
ing number of discovered vulnerabilities affecting Mediatek
and Unisoc, who do not publish all their vulnerabilities in
AOSP bulletins. As we have seen, vulnerabilities included into
AOSP bulletins are less likely to be never mitigated. In this
sense, the AOSP bulletins are an organizational measure to
improve transparency, but also positively correlate with update
availability in cases where CMs commit to publishing all
vulnerabilities within these bulletins.

B. Recommendations to Industry

Bolster CMs’ internal security teams. Our study shows that
vulnerabilities exist in several chipset generations before dis-
covery and remain in the firmware and drivers until identified
(cf. Section V-A). There is an urgent need for increased efforts
and resources for faster vulnerability discovery. Currently,
half of the CMs discover less than 15% of vulnerabilities
internally, relying on external researchers (cf. Section V-C).
This contrasts with the security practices of other high-impact
targets like web browsers (cf. Section VI). We recommend
that CMs with low internal discovery rates conduct internal



security testing, such as employing a “red-team” of penetration
testers, and publish all internally found vulnerabilities in their
security bulletins.

Prioritize chipset firmware. Vulnerabilities in firmware are
more severe than driver vulnerabilities, putting devices at
greater risk (cf. Section V-C). We recommend that CMs
deploy appropriate technical measures to reduce the impact
of firmware vulnerabilities. Potential technical measures that
could reduce the severity gap between drivers and firmware
include defense techniques such as process isolation and
memory-tagging for address sanitization. These are already
deployed in Android itself [53] and thus promote driver
security, but are often missing in chipset firmware [4].
Ensure completeness of AOSP security bulletins. Infor-
mation on previously discovered vulnerabilities, patches, and
updates is often unavailable or scattered across multiple
sources. We find the incomplete information in AOSP security
bulletins particularly problematic, as they are the premier
way for Android users and researchers to determine if a
device has received all the latest security updates. If particular
vulnerabilities never occur in these bulletins, it is impossible
for users to judge the security of their device. Per our analysis,
this is the case for more than 75% of vulnerabilities affecting
chipsets of some CMs (cf. Sections IV-A, V-C and V-D). Com-
pleteness of AOSP bulletins could be achieved by enforcing
that CMs report all vulnerabilities to the AOSP by making this
a requirement for Android compatibility certifications.
Establish an industry-wide responsible disclosure time-
frame. While the 90-day responsible disclosure period might
be insufficient for hardware deployed in hundreds of different
device models, we suggest that an appropriate timeframe
(around 200 days, as per our analysis) should be established
and followed to minimize outlier vulnerabilities that remain
unpatched for extended periods. Ideally, this embargo time-
frame would not only include the patch development, but also
the update packaging phase of the vulnerability lifecycle, as we
have demonstrated in our analysis that this phase adds another
significant delay until updates finally arrive on end-users’
devices (cf. Section V-D), putting them at risk of threat actors
developing exploits based on publicly available vulnerability
information.

C. Use Cases in Research

Our data enables multiple practical use cases that we believe
to benefit the research community.

More representative evaluations. Evaluating novel vulnera-
bility discovery techniques warrants a representative set of de-
vices to empirically test the success of said techniques. As we
observed in Section V-C, many chipset models share the same
vulnerabilities through code re-use. Manually testing chipsets
affected by mostly overlapping sets of vulnerabilities is time
consuming, unnecessarily expensive and thus inefficient. Our
website offers a tool (www.chipsets.org/devices/pick) to effort-
lessly, and via a graphical user interface, select a variety of
devices with chipsets that share fewer vulnerabilities, increas-

13

TABLE III
PRESENTED AND ACTUAL NUMBER OF SMARTPHONE MODELS AFFECTED
BY CHIPSET CVES DISCOVERED BY ACADEMIA. T IDENTIFIER AS PER
ORIGINAL PAPER.

Paper Identifier # aff. (paper) # aff. (actual)
Braktooth [54] CVE-2021-30348 1 293
Braktooth [54] CVE-2022-20021 - 609
Instructions Unclear [55] CVE-2022-26446 2 1492
Instructions Unclear [55] CVE-2022-32591 1 1397
Owfuzz [56] CVE-2021-1903 3 572
HW-backed Heist [57] CVE-2018-11976 1 1481
DoLTEst [5] CVE-2019-2289 17 1381
Signal Overshadowing [58]  SigOver 10 330
DIKEUE [59] El 7 420
DIKEUE [59] E13 3 115

ing the likelihood of testing novel implementations rather than
re-used ones.

Accurate depiction of the impact of newly discovered vul-
nerabilities. Researching chipset vulnerabilities is a dynamic
field, and understanding their real-world impact is crucial.
Typically, researchers gauge this impact by assessing how
many devices are affected by a vulnerability they uncover.
However, CMs usually only disclose information on affected
chipset models, not the specific smartphone models impacted.
Consequently, many research papers on novel vulnerabilities
tend to underestimate the number of affected smartphone mod-
els due to the cascading effects discussed in Section V-D, and
only report the devices they manually tested. In contrast, our
unified knowledge base allows for automatic cross-referencing
of chipset vulnerability information published by CMs with
affected smartphone models. This provides a comprehensive
number of affected device models. We summarize the differ-
ence between several papers’ reported and actual number of
affected devices in Table III, further highlighting the extent of
this under-estimation in current literature.

Identifying avenues for future research. Since our unified
knowledge base helps to paint a complete picture of chipset
vulnerabilities, this information can therefore further facilitate
the identification of outliers that warrant future research.
Underrepresented components: As described in Section V-C,
so far, extremely few vulnerabilities in the Near Field Com-
munication (NFC) stack have been discovered, although all
of these were rather severe. Therefore, NFC might call for
further scrutiny. High severity targets: Similarly, we found
that firmware vulnerabilities tend to be more severe than
driver vulnerabilities. However, currently, our data set contains
roughly twice as many driver than firmware vulnerabilities. We
thus identify a need for more approaches on firmware security
testing.

D. Threats to Validity

Undiscovered vulnerabilities. As we exclusively analyze
vulnerabilities acknowledged by CMs or OEMs, this precludes
the estimation of total vulnerabilities in chipsets or phones
due to undiscovered vulnerabilities. Potential impact: For this
reason, any absolute number associated with vulnerability
introduction (RQ1) does not represent the overall number of


www.chipsets.org/devices/pick

existing vulnerabilities. We believe our conclusion is valid
nonetheless because the relative numbers in Section V-A and
the significant differences in vulnerability origin and persis-
tence are unaffected, as both discovered and undiscovered
vulnerabilities come from the same underlying distribution of
chipset vulnerabilities.

Zero-day vulnerabilities. Our data set does not contain
information on vulnerabilities that were discovered by threat-
actors, and that CMs are currently unaware of. Such Zero-
day vulnerabilities might be particularly severe vulnerabili-
ties, as threat-actors are typically interested in exploitability.
Potential impact: Within RQ2 we only consider vulnerabilities
discovered by CMs (internal) and external researchers who
report their findings to the CMs. Therefore, our results do
not allow claims on the total amount of discovered vulnera-
bilities. Likewise, if there would be a significant amount of
high-severity zero-day vulnerabilities, the absolute numbers
of high-severity vulnerabilities within RQ3 and especially
Figure 4 might be lower-bounds. Nonetheless the conclusion
that firmware vulnerabilities are, on average, more severe than
driver vulnerabilities prevails, as the underestimation would
equally affect firmware and drivers.

Silent patching. Our knowledge base does not contain infor-
mation on vulnerabilities that are known to CMs, but have
not been publicly disclosed and instead were patched without
a public announcement. Given that Qualcomm and Samsung
already published hundreds of internally discovered vulner-
abilities, some of which being very severe and exploitable,
the upside of additionally engaging in silent patching seems
to be rather minimal for these two CMs. Potential impact: We
assume that silently patched vulnerabilities would be internally
discovered, as preventing external researchers from publishing
information on their discoveries is not generally possible. This
would skew the results presented in Section V-B. Likewise, the
results on timeframes for patch development (Section V-C)
and update availability (Section V-D) may not apply for
silently patched vulnerabilities. Lastly, CMs may be partic-
ularly inclined to silently patch high severity vulnerabilities.
The absolute numbers presented in Figure 4 likely represent
a lower bound, yet this does not alter the conclusion that
firmware vulnerabilities are generally more severe than driver
vulnerabilities, as both are equally impacted by this limitation.
Data collection and augmentation. Some our our data is
obtained from websites, requiring us to automatically extract
relevant information. Since this process is based on carefully
written, individual parsers and validators for each vantage
point, we believe our results to be as reliable as state of the art
papers on this topic, that all employ a similar data collection
method [7], [18], [19], [21]. Potential impact: As information
on vulnerabilities is gathered from several independent vantage
points (CM security bulletins, AOSP security bulletins and
NVD data), we believe that this information is comprehensive.
Information that is collected from a single source, such as
chipset release dates and assignments of chipset models to
phone models, may occasionally be incorrect. Augmented
information may also have inaccuracies. However, given the

14

large quantities of vulnerabilities, chipsets, and phones sug-
gested, the primary outcomes of this study will not be affected
by a limited number of data imperfections.

VIII. CONCLUSION

We create the first comprehensive knowledge base of 3,676
smartphone chipset vulnerabilities, tightly linking chipset
models and vulnerabilities to devices and their updates. By
empirically analyzing this data set, we discover that chipset
vulnerabilities often persist across many chipset generations,
such that each chipset vulnerability exposes hundreds or
even thousands of different smartphone models. We identified
significant shortcomings in current vulnerability management
processes, such as inconsistently published information and
OEMs frequently failing to inform users about vulnerabilities
affecting their devices, leaving them at risk of exploitation.
Our findings highlight unique characteristics of chipset vulner-
abilities, including extensive code reuse and prolonged patch
propagation times, which set them apart from vulnerabilities
in other high-risk targets like web browsers and operating sys-
tems. To prevent chipset firmware and drivers from remaining
a critical weakness in the security architecture of Android
smartphones, we propose several measures to enhance their
security. We envision that our unified knowledge base will
enable future research to tackle these problems by identifying
particularly problematic aspects of the vulnerability lifecycle.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their valuable comments and suggestions. We also thank Paul
Staat, Alyssa Milburn and Marius Muench for their feedback.
This work was supported by the German Federal Office for
Information Security (FKZ: Pentest-5GSec - 01M023025B)
and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972.

REFERENCES

[1] U.S. Department of Homeland Security, “CISA Adds Four Known
Exploited Vulnerabilities to Catalog,” https://www.cisa.gov/news-events/
alerts/2023/12/05/cisa-adds- four-known-exploited- vulnerabilities-
catalog, 2023, [Online; accessed December 6, 2024].

StatCounter, “Global market share held by mobile operating systems
from 2009 to 2023, by quarter.” https://www.statista.com/statistics/
272698/global-market-share-held-by-mobile-operating-systems-since-
2009/, October 2023, [Online; accessed December 6, 2024].

Security Lab, “Predator Files: Technical deep-dive into Intellexa
Alliance’s  surveillance  products,” https://securitylab.amnesty.org/
latest/2023/10/technical-deep-dive-into-intellexa-alliance-surveillance-
products/, Amnesty International, 2023, [Online; accessed December 6,
2024].

G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park,
T. Scharnowski, T. Tucker, P. Traynor, and K. Butler, “FIRMWIRE:
Transparent dynamic analysis for cellular baseband firmware,” in Net-
work and Distributed Systems Security Symposium (NDSS) 2022, 2022.
C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “DoLTEst:
In-depth downlink negative testing framework for LTE devices,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 1325-1342.

R.-P. Weinmann, “Baseband attacks: Remote exploitation of memory
corruptions in cellular protocol stacks,” in 6th USENIX Workshop
on Offensive Technologies (WOOT 12). Bellevue, WA: USENIX
Association, Aug. 2012.

[2]

[3]

[4]

[5]

[6]


https://www.cisa.gov/news-events/alerts/2023/12/05/cisa-adds-four-known-exploited-vulnerabilities-catalog
https://www.cisa.gov/news-events/alerts/2023/12/05/cisa-adds-four-known-exploited-vulnerabilities-catalog
https://www.cisa.gov/news-events/alerts/2023/12/05/cisa-adds-four-known-exploited-vulnerabilities-catalog
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://securitylab.amnesty.org/latest/2023/10/technical-deep-dive-into-intellexa-alliance-surveillance-products/
https://securitylab.amnesty.org/latest/2023/10/technical-deep-dive-into-intellexa-alliance-surveillance-products/
https://securitylab.amnesty.org/latest/2023/10/technical-deep-dive-into-intellexa-alliance-surveillance-products/

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Acar, G. S. Tuncay, E. Luques, H. Oz, A. Aris, and S. Uluagac, “50
shades of support: A device-centric analysis of android security updates,”
in Network and Distributed Systems Security Symposium (NDSS) 2024,
2024.

J. Classen, F. Gringoli, M. Hermann, and M. Hollick, “Attacks on
wireless coexistence: Exploiting cross-technology performance features
for inter-chip privilege escalation,” in 2022 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2022, pp. 1229-1245.

S. Swanson and M. B. Taylor, “Greendroid: Exploring the next evolution
in smartphone application processors,” IEEE Communications Maga-
zine, vol. 49, no. 4, pp. 112-119, 2011.

M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in Proceedings of the 49th annual
design automation conference, 2012, pp. 1131-1136.

Ginny, C. Kumar, and K. Naik, “Smartphone processor architecture,
operations, and functions: current state-of-the-art and future outlook:
energy performance trade-off: Energy—performance trade-off for smart-
phone processors,” The Journal of Supercomputing, vol. 77, pp. 1377—
1454, 2021.

A. Cabrera, S. Hitefield, J. Kim, S. Lee, N. R. Miniskar, and J. S. Vetter,
“Toward performance portable programming for heterogeneous systems
on a chip: A case study with qualcomm snapdragon soc,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC), 2021.
Counterpoint ~ Research,  “”Smartphone  application  processor
(AP)/system-on-chip (SoC) vendor shipment share worldwide from
2020 to 20227 Chart.” https://www.statista.com/statistics/1226674/
smartphone-application-processor- vendor-shipment- share-worldwide/,
September 2022, [Online; accessed December 6, 2024].

Zerodium, “Zerodium ,” https://zerodium.com/program.html, 2024, [On-
line; accessed December 6, 2024].

B. Schneier, “Crypto-Gram: Full Disclosure and the Window of Expo-
sure,” https://www.schneier.com/crypto-gram/archives/2000/0915.html#
1, Counterpane Internet Security, Inc., September 2000, [Online; ac-
cessed December 6, 2024].

Mozilla Project, “Mozilla Firefox: Development Process,” https://wiki.
mozilla.org/Release_Management/Release_Process, 2022, [Online; ac-
cessed December 6, 2024].

Android Open Source Project, “Android software management,” https://
source.android.com/docs/setup/about/codelines, 2024, [Online; accessed
December 6, 2024].

S. Farhang, M. B. Kirdan, A. Laszka, and J. Grossklags, “An empirical
study of android security bulletins in different vendors,” in Proceedings
of The Web Conference 2020, 2020, pp. 3063-3069.

Q. Hou, W. Diao, Y. Wang, C. Mao, L. Ying, S. Liu, X. Liu, Y. Li,
S. Guo, M. Nie er al., “Can we trust the phone vendors? comprehen-
sive security measurements on the android firmware ecosystem,” IEEE
Transactions on Software Engineering, 2023.

K. R. Jones, T.-F. Yen, S. C. Sundaramurthy, and A. G. Bardas,
“Deploying android security updates: an extensive study involving
manufacturers, carriers, and end users,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 551-567.

M. Linares-Vasquez, G. Bavota, and C. Escobar-Veldsquez, “An empir-
ical study on android-related vulnerabilities,” in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017.
Z. Zhang, H. Zhang, Z. Qian, and B. Lau, “An investigation of the
android kernel patch ecosystem,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 3649—
3666.

M. Shahzad, M. Z. Shafiq, and A. X. Liu, “Large scale characterization
of software vulnerability life cycles,” IEEE Transactions on Dependable
and Secure Computing, vol. 17, no. 4, pp. 730-744, 2019.

N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube, and M. Miihlh&user,
“How long do vulnerabilities live in the code? a {Large-Scale} empirical
measurement study on {FOSS} vulnerability lifetimes,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 359-376.

W. A. Arbaugh, W. L. Fithen, and J. McHugh, “Windows of vulner-
ability: A case study analysis,” Computer, vol. 33, no. 12, pp. 52-59,
2000.

S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in Proceedings of the 2006 SIGCOMM Workshop on Large-
Scale Attack Defense, ser. LSAD *06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 131-138.

15

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

N. Alexopoulos, S. M. Habib, S. Schulz, and M. Miihlhéuser, “The tip of
the iceberg: On the merits of finding security bugs,” ACM Transactions
on Privacy and Security (TOPS), vol. 24, no. 1, pp. 1-33, 2020.

S. Clark, M. Collis, M. Blaze, and J. M. Smith, “Moving targets:
Security and rapid-release in firefox,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 1256-1266.

S. Clark, S. Frei, M. Blaze, and J. Smith, “Familiarity breeds con-
tempt: The honeymoon effect and the role of legacy code in zero-day
vulnerabilities,” in Proceedings of the 26th annual computer security
applications conference, 2010, pp. 251-260.

K. Huang, J. Zhang, W. Tan, and Z. Feng, “Shifting to mobile:
Network-based empirical study of mobile vulnerability market,” IEEE
Transactions on Services Computing, vol. 13, no. 1, pp. 144-157, 2020.
A. Sivagnanam, S. Atefi, A. Ayman, J. Grossklags, and A. Laszka,
“On the benefits of bug bounty programs: A study of chromium
vulnerabilities,” in Workshop on the Economics of Information Security
(WEIS), 2021.

S. Atefi, A. Sivagnanam, A. Ayman, J. Grossklags, and A. Laszka,
“The benefits of vulnerability discovery and bug bounty programs: Case
studies of chromium and firefox,” in Proceedings of the ACM Web
Conference 2023, 2023, pp. 2209-2219.

M. Zhao, J. Grossklags, and P. Liu, “An empirical study of web
vulnerability discovery ecosystems,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 1105-1117.

A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, “Cleaning the
nvd: Comprehensive quality assessment, improvements, and analyses,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 6,
pp. 42554269, 2021.

Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in 28th USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 869-885.

Y. Jiang, M. Jeusfeld, and J. Ding, “Evaluating the data inconsistency
of open-source vulnerability repositories,” in Proceedings of the 16th
International Conference on Availability, Reliability and Security, 2021,
pp. 1-10.

D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp. 919-936.

R. Croft, M. A. Babar, and L. Li, “An investigation into inconsistency of
software vulnerability severity across data sources,” in 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). 1EEE, 2022, pp. 338-348.

IDC, “”Smartphone shipments by vendor worldwide from 4th
quarter 2009 to 2nd quarter 2023 (in million units).” Chart.”
https://www.statista.com/statistics/271490/quarterly- global-smartphone-
shipments-by-vendor/, July 2023, [Online; accessed December 6,
2024].

F. Richter, “Google Remains a Niche Player in the Smartphone
Market ,” https://www.statista.com/chart/25463/popularity- of- google-
smartphones/, Statista, 2023, [Online; accessed December 6, 2024].

M. Lempers, “Fairphone Impact Report 2022,” https://www.fairphone.
com/wp-content/uploads/2023/05/Fairphone-Impact-Report-2022.pdf,
Fairphone B.V., 2023, [Online; accessed December 6, 2024].
SAMSUNG, “Samsung to Launch Mobile Security Rewards
Program, = Welcoming  Security = Research =~ Community )’
https://news.samsung.com/global/samsung-to-launch-mobile-security-
rewards- program- welcoming-security-research-community, 2016,
[Online; accessed December 6, 2024].

Qualcomm Technologies, Inc., “Qualcomm announces launch of bounty
program, offering up to $15,000 usd for the discovery of vulnerabilities,”
https://www.qualcomm.com/news/releases/2016/11/qualcomm-
announces-launch-bounty-program-offering- 15000-usd- discovery,
2016, [Online; accessed December 6, 2024].

MediaTek Inc., “Internet Archive Wayback Machine, August 2023:
MediaTek Report  Vulnerability ,”  https://web.archive.org/web/
20230812015002/https://corp.mediatek.com/security-contact, 2023,
[Online; accessed December 6, 2024].


https://www.statista.com/statistics/1226674/smartphone-application-processor-vendor-shipment-share-worldwide/
https://www.statista.com/statistics/1226674/smartphone-application-processor-vendor-shipment-share-worldwide/
https://zerodium.com/program.html
https://www.schneier.com/crypto-gram/archives/2000/0915.html#1
https://www.schneier.com/crypto-gram/archives/2000/0915.html#1
https://wiki.mozilla.org/Release_Management/Release_Process
https://wiki.mozilla.org/Release_Management/Release_Process
https://source.android.com/docs/setup/about/codelines
https://source.android.com/docs/setup/about/codelines
https://www.statista.com/statistics/271490/quarterly-global-smartphone-shipments-by-vendor/
https://www.statista.com/statistics/271490/quarterly-global-smartphone-shipments-by-vendor/
https://www.statista.com/chart/25463/popularity-of-google-smartphones/
https://www.statista.com/chart/25463/popularity-of-google-smartphones/
https://www.fairphone.com/wp-content/uploads/2023/05/Fairphone-Impact-Report-2022.pdf
https://www.fairphone.com/wp-content/uploads/2023/05/Fairphone-Impact-Report-2022.pdf
https://news.samsung.com/global/samsung-to-launch-mobile-security-rewards-program-welcoming-security-research-community
https://news.samsung.com/global/samsung-to-launch-mobile-security-rewards-program-welcoming-security-research-community
https://www.qualcomm.com/news/releases/2016/11/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://www.qualcomm.com/news/releases/2016/11/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://web.archive.org/web/20230812015002/https://corp.mediatek.com/security-contact
https://web.archive.org/web/20230812015002/https://corp.mediatek.com/security-contact

[45] Google LLC, “Hardening Firmware Across the Android Ecosystem

) https://security.googleblog.com/2023/02/hardening- firmware- across-
android.html, 2023, [Online; accessed December 6, 2024].

M. Clark, “Google says hackers could silently own your phone
until samsung fixes its modems,” https://www.theverge.com/2023/3/
16/23644013/samsung-exynos-modem-security-issue-project-zero, Vox
Media, LLC., 2023, [Online; accessed December 6, 2024].
SAMSUNG, “Semiconductor Product Security ,” https://semiconductor.
samsung.com/support/quality-support/disclosure-policy/, 2016, [Online;
accessed December 6, 2024].

J. Edge, “The bogus CVE problem,” https://lwn.net/Articles/944209/,
LWN.net by Eklektix, Inc., September 2023, [Online; accessed Decem-
ber 6, 2024].

PostgreSQL Global Development Group, “CVE-2020-21469 is not a se-
curity vulnerability,” https://www.postgresql.org/about/news/cve-2020-
21469-is-not-a-security-vulnerability-2701/, August 2023, [Online; ac-
cessed December 6, 2024].

D. Stenberg, “NVD makes up vulnerability severity levels,”
https://daniel.haxx.se/blog/2023/03/06/nvd- makes-up-vulnerability-
severity-levels/, March 2023, [Online; accessed December 6, 2024].

K. S. Yim, I. Malchev, A. Hsieh, and D. Burke, “Treble: Fast software
updates by creating an equilibrium in an active software ecosystem
of globally distributed stakeholders,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1-23, 2019.

Android Open Source Project, “Android Security Bulletins,” https://
source.android.com/docs/security/bulletin/asb-overview, 2024, [Online;
accessed December 6, 2024].

Android Platform Hardening Team, “System hardening in An-
droid 11,” https://android-developers.googleblog.com/2020/06/system-
hardening-in-android- 11.html, June 2020, [Online; accessed December
6, 2024].

M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“BrakTooth: Causing havoc on bluetooth link manager via directed
fuzzing,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 1025-1042.

D. Klischies, M. Schloegel, T. Scharnowski, M. Bogodukhov, D. Rup-
precht, and V. Moonsamy, “Instructions unclear: Undefined behaviour in
cellular network specifications,” in 32nd USENIX Security Symposium
(USENIX Security 23).  Anaheim, CA: USENIX Association, Aug.
2023, pp. 3475-3492.

H. Cao, L. Huang, S. Hu, S. Shi, and Y. Liu, “Owfuzz: Discovering wi-fi
flaws in modern devices through over-the-air fuzzing,” in Proceedings
of the 16th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, 2023, pp. 263-273.

K. Ryan, “Hardware-backed heist: Extracting ecdsa keys from qual-
comm’s trustzone,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 181-194.
H. Yang, S. Bae, M. Son, H. Kim, S. M. Kim, and Y. Kim, “Hiding
in plain signal: Physical signal overshadowing attack on LTE,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 55-72.

S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino,
“Noncompliance as deviant behavior: An automated black-box noncom-
pliance checker for 4g lte cellular devices,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1082-1099.

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

APPENDIX

In this section we explain further technical details on the
implementation that automatically performs the data collection
process described in Section IV.

A. Data collection

As shown in Table IV, we incorporate information from
CMs, OEMs, the AOSP, NIST, as well as websites listing
device and chipset information. The entire data collection is
implemented in NodeJS?, using the NestJS* framework, using

3https://nodejs.org/
“https://nestjs.com/

16

a MariaDB? instance to store collected information using a re-
lational data model. As the websites differ in data formats, we
employ different techniques to obtain structured information.
In the cases of Tecno and the NIST NVD, vantage points are
available to us as easily processable JSON documents, which
we download using NodeJS built-in functionality. The other
vantage points require processing of HTML-based websites.
All vantage points that are HTML-based websites use a reoc-
curring HTML structure within the same vantage point. We
download their HTML files, again using built-in functionality,
and then use the Cheerio library® to extract specific fields from
the HTML structure via their CSS selector.

For instance, all Qualcomm security bulletins use the same,
tabular format. This enables us to obtain their information by
traversing the HTML structure using CSS selectors, taking
account labels - such as HTML column headers, to detect
structural changes. Figure 9 depicts a part of a Qualcomm
security bulletin. To obtain the text associated with the Tech-
nology Area field, we use the td: contains (Technology
Area) + td CSS selector, which selects the table cell
adjacent to the cell that contains the text “Technology Area”.

CVE-2023-28578
CVEID CVE-2023-28578
Title mproper Input Validation in Services
Description Memory corruption in Core Services

Technology Area Core Services

Fig. 9. Excerpt from a Qualcomm security bulletin. Source:
https://docs.qualcomm.com/product/publicresources/securitybulletin/march-
2024-bulletin.html.

For each vantage point we developed a separate parser,
taking into account the vantage point’s specific structure.
This is in-line with the data collection methods employed
in prior work [7], [18], [19], [21]. Any data point ob-
tained is automatically checked for plausibility, allowing us
to catch changes should the HTML structure change in the
future. For instance, CVE numbers should always follow the
CVE-<YEAR>-<NUM> pattern, where the first set of digits
<YEAR> must be a valid year in the past.

In cases where the security bulletins are not available as
static HTML, and instead are rendered via Javascript, we use
Puppeteer’. This allows us to automate a browser which is run-
ning in the background to open the relevant website, execute
any Javascript to generate HTML, and then process the HTML
as described before. This is currently only needed to process
security bulletins published by Unisoc. In contrast to prior
work, all collection procedures, are performed periodically,
and followed by a transformation into the schema illustrated in

Shttps://mariadb.org/
Ohttps://cheerio.js.org/
Thttps://pptr.dev/


https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://www.theverge.com/2023/3/16/23644013/samsung-exynos-modem-security-issue-project-zero
https://www.theverge.com/2023/3/16/23644013/samsung-exynos-modem-security-issue-project-zero
https://semiconductor.samsung.com/support/quality-support/disclosure-policy/
https://semiconductor.samsung.com/support/quality-support/disclosure-policy/
https://lwn.net/Articles/944209/
https://www.postgresql.org/about/news/cve-2020-21469-is-not-a-security-vulnerability-2701/
https://www.postgresql.org/about/news/cve-2020-21469-is-not-a-security-vulnerability-2701/
https://daniel.haxx.se/blog/2023/03/06/nvd-makes-up-vulnerability-severity-levels/
https://daniel.haxx.se/blog/2023/03/06/nvd-makes-up-vulnerability-severity-levels/
https://source.android.com/docs/security/bulletin/asb-overview
https://source.android.com/docs/security/bulletin/asb-overview
https://android-developers.googleblog.com/2020/06/system-hardening-in-android-11.html
https://android-developers.googleblog.com/2020/06/system-hardening-in-android-11.html
https://nodejs.org/
https://nestjs.com/
https://docs.qualcomm.com/product/publicresources/securitybulletin/march-2024-bulletin.html
https://docs.qualcomm.com/product/publicresources/securitybulletin/march-2024-bulletin.html
https://mariadb.org/
https://cheerio.js.org/
https://pptr.dev/

Figure 10. The unified knowledge base is therefore constantly
evolving as vantage points are updated by NIST, CMs, OEMs
and the AOSP, rather than being a snapshot of the situation at
the time the paper was written.

B. Data augmentation

After the individual data points have been collected, some
information is missing or inconsistently represented across
CMs. Below, we provide a list of all data fields that we
augment to mitigate this issue, and details on the augmentation
procedures.

Chipset components. When comparing vulnerabilities across
CMs, we have to normalize the name of the component
affected by a chipset, as different CMs use different names
for components implementing the same functionality. For
instance, while MediaTek licenses the ARM Mali GPU archi-
tecture, Qualcomm uses their in-house Adreno GPU design.
As both fulfil the same functional objective, we want them
to be assigned a common component name. To fulfil this
requirement, our list of components is inherently based on
the differentiation used by CMs. We build a list of common
component names, and CM specific key-terms identifying
components, by iteratively scanning CM security bulletins of
all CMs for the field containing the CM specific component
name, e.g. “Technology Area” in Qualcomm Security Bul-
letins. We then perform the following steps:

1) Check if the CM specific component name is already in
our set of key-terms. If so, stop the process for the current
bulletin and continue with the next bulletin.

If not, look up the CM specific component name in
technical documentation, source code fragments and mar-
keting material to identify its functionality.

Identify if there is already a common component name
for the identified functionality, if not: add it to the list.
Add the CM specific component name as a key term for
the common component name either identified or added
in step 3.

5) Continue this process with the next bulletin.

Using this approach, we establish a nomenclature of An-
droid smartphone chipset components that differentiates be-
tween the following components:

Bluetooth. Bluetooth connections and packets, including
Bluetooth low energy.

WiFi. IEEE-802.11 (WiFi) connectivity

Cellular. Cellular connectivity subsystem, including signal
processing, baseband processor and Radio Interface Layer
(RIL), used to establish connections to e.g., 4G and 5G
networks.

GPU. Subsystem responsible for graphics processing and
rendering, including Digital Rights Management (DRM) for
visual content (i.e., WideVine).

Vision. Camera, facial recognition and similar visual percep-
tion systems.

NFC. Near-Field-Communication, for instance used for digital
payment and smartcard applications.

2)

3)

4)

17

Boot. Bootloader and other early-stage firmware used to start
the operating system.

Position. Subsystem to determine device position, e. g., via the
Global Positioning System.

Audio. Input and output audio processing pipelines.
Virtualization. Hardware support for virtual machine moni-
tors and hypervisors.

Machine Learning. Support for the implementation of infer-
ence systems,e. g., acceleration of matrix operations for neural
network computations via dedicated hardware.

Trust. Isolation functionalities for programs with elavated
security requirements (i.e., via ARM TrustZone), signature
as well as efuse mechanisms, used for instance to authenticate
device integrity.

Power. Power management facilities, for instance used to
reduce power consumption while the device is not actively
used.

IPC. Inter-processor communication, used by primary com-
ponents to communicate with each other, e.g. via mailbox
mechanisms or queues transmitted via serial busses.
Memory. Memory management and protection mechanisms.
Debug. Logging and debugging interfaces.

C. Data integration

After the data has been collected and augmented, informa-
tion collected from different vantage points is still separated,
and not adhering to a common schema. During the data
integration step, we integrate individually collected data points
into the shared relational schema shown in Figure 10. To do
so, we first map the individual descriptors used by the vantage
points to our own, canonical descriptors. For instance, Qual-
comm’s CVE ID in Figure 9 becomes Identifier in the
Vulnerability relation. The mapping between canonical
and vantage point-specific attribute names is based on a set
of static rules. We then insert the collected information into
the relational database. For potentially conflicting information,
such as vulnerability severity, we store the values separately
for each vantage point. This allows us to analyze conflicting
information in Section V-C. Lastly, we establish foreign key
relationships between the different entities, which allows us to
analyze the vulnerability lifecycle based on data from different
vantage points in a unified way. For instance, we establish
a many-to-many relationship between vulnerabilities and the
chipset models they affect. To do so, we use the list of affected
chipset model names published in the CM security bulletin
and NVD entry of each vulnerability to identify matching
chipset models in our database. We then establish the foreign
key relationship between the vulnerability, and all identified
chipset models. Since we also establish a one-to-to-many
relationship between every chipset model and the devices it is
used in, this allows us to determine which vulnerability affects
which devices by traversing the foreign key relationships. All
foreign keys we establish are depicted as arrows in Figure 10.



contains patches

applies to

for multiple [

(

| Device Manufacturer

produces

v

develops and publishes
Vulnerability < Update <
Rel dat .
Identifier e;:;(fona € —[ Chipset Manufacturer
Description
Severity roduces
Is external report? |« 'patch.es and - p
Location publishes information \
Component > Chipset Model -
Reported date affects contains
OEM notification date Name
Publication date Marketing names
Release date

Device

-

Marketing name
Code name
Release date

Fig. 10. Relational schema employed by our knowledge base. Boxes correspond to relations, and contain the attributes in that relation. Arrows correspond
to foreign key references.

TABLE IV
LIST OF VANTAGE POINTS

Relevant for Phase

Name Vantage Points Format Intro.  Discovery Patching Updating
Qualcomm Security Bulletin' CM HTML v v v X
Mediatek Security Bulletin® CM HTML v/ v/ v X
Samsung Security Bulletin® CM, OEM HTML v v v v
Samsung Semicon. Security Bulletin* CM HTML v v v X
Unisoc Security Bulletin’ CM Javascript v v v X
Samsung Updates® OEM HTML X X X v
Xiaomi Updates’ OEM HTML X b X v
Tecno Updates® OEM JSON X X X 4
Tecno Changesets’ OEM JSON X X X v
Android Security Bulletin!® AOSP HTML X X v v
NIST NVD Database!! NIST, CVE JSON v v v X
GSMArena!? Device information HTML X X X 4
Wikipedia!? Chipset release dates ~HTML v X X X

Exemplary URLs:

1 https://docs.qualcomm.com/product/publicresources/securitybulletin/march-2024-bulletin.html
2 https://corp.mediatek.com/product-security-bulletin/March-2024
3 https://security.samsungmobile.com/securityUpdate.smsb

4 https://semiconductor.samsung.com/support/quality-support/product-security-updates/
3 https://www.unisoc.com/en_us/secy/announcementDetail/ 1 754320321801945089

6 https://doc.samsungmobile.com/SM- A415F/PHN/doc.html
7 https://xiaomifirmwareupdater.com/archive/miui/agate/

8 https://security.tecno.com/slm/deviceScope?lang=en-US

9 https://security.tecno.com/slm/patchInfo?lang=en_US&year=2022&quarter=01
10 hitps://source.android.com/docs/security/bulletin/2023-09-01

I https://services.nvd.nist.gov/rest/json/cves/2.02cveld=CVE-2022-33251
12 https://www.gsmarena.com/samsung_galaxy_s20_fe_5g-10377.php

13 https://en.wikipedia.org/w/api.php?action=parse&page=List_of_Qualcomm_Snapdragon_systems_on_chips&prop=text&section=1&format=json

18


https://docs.qualcomm.com/product/publicresources/securitybulletin/march-2024-bulletin.html
https://corp.mediatek.com/product-security-bulletin/March-2024
https://security.samsungmobile.com/securityUpdate.smsb
https://semiconductor.samsung.com/support/quality-support/product-security-updates/
https://www.unisoc.com/en_us/secy/announcementDetail/1754320321801945089
https://doc.samsungmobile.com/SM-A415F/PHN/doc.html
https://xiaomifirmwareupdater.com/archive/miui/agate/
https://security.tecno.com/slm/deviceScope?lang=en-US
https://security.tecno.com/slm/patchInfo?lang=en_US&year=2022&quarter=01
https://source.android.com/docs/security/bulletin/2023-09-01
https://services.nvd.nist.gov/rest/json/cves/2.0?cveId=CVE-2022-33251
https://www.gsmarena.com/samsung_galaxy_s20_fe_5g-10377.php
https://en.wikipedia.org/w/api.php?action=parse&page=List_of_Qualcomm_Snapdragon_systems_on_chips&prop=text&section=1&format=json

	Introduction
	Background
	Smartphone Chipsets
	Vantage Points
	Vulnerability Lifecycle

	Related Work
	Method
	Data Collection
	Data Augmentation

	Empirical Analysis
	RQ1: Vulnerability Introduction
	Vulnerability origin
	Vulnerability persistence

	RQ2: Vulnerability Discovery
	Growth in vulnerability discovery
	Internal discovery rates
	Number of discovered vulnerabilities by component

	RQ3: Vulnerability Patching
	Vulnerability severeness in firmware and drivers
	Time until patch availability
	Information availability and consistency

	RQ4: Vulnerability Updating
	Number of affected smartphones
	Update availability
	Update timeline


	Comparative Analysis
	Vulnerability Introduction
	Vulnerability Discovery
	Patch Development
	Updates

	Discussion
	Changes in the Android ecosystem
	Recommendations to Industry
	Use Cases in Research
	Threats to Validity

	Conclusion
	References
	Appendix
	Data collection
	Data augmentation
	Data integration


