
Towards Understanding Unsafe Video Generation

Yan Pang∗, Aiping Xiong†, Yang Zhang‡, Tianhao Wang∗
∗ University of Virginia, † Penn State University, ‡ CISPA Helmholtz Center for Information Security

{yanpang, tianhao}@virginia.edu; axx29@psu.edu; zhang@cispa.de

Abstract—Video generation models (VGMs) have demon-
strated the capability to synthesize high-quality output. It is im-
portant to understand their potential to produce unsafe content,
such as violent or terrifying videos. In this work, we provide a
comprehensive understanding of unsafe video generation.

First, to confirm the possibility that these models can indeed
generate unsafe videos, we choose unsafe content generation
prompts collected from 4chan and Lexica, and three open-
source SOTA VGMs to generate unsafe videos. After filtering out
duplicates and poorly generated content, we create an initial set of
2112 unsafe videos from an original pool of 5607 videos. Through
clustering and thematic coding analysis of these generated videos,
we identify 5 unsafe video categories: Distorted/Weird, Terrifying,
Pornographic, Violent/Bloody, and Political. With IRB approval,
we then recruit online participants to help label the generated
videos. Based on the annotations submitted by 403 participants,
we identify 937 unsafe videos from the initial video set. With the
labeled information and the corresponding prompts, we create
the first dataset of unsafe videos generated by VGMs.

We then study possible defense mechanisms to prevent the
generation of unsafe videos. Existing defense methods in image
generation focus on filtering either input prompt or output re-
sults. We propose a new approach called Latent Variable Defense
(LVD), which works within the models internal sampling process.
Since LVD is capable of detecting unsafe samples at the initial
phase of the inference process, it achieves a defense accuracy
of 0.90 while reducing time and computational resources by
10× when sampling a large number of unsafe prompts. Our
experiment includes three open-source SOTA video diffusion
models, each achieving accuracy rates of 0.99, 0.92, and 0.91,
respectively. Additionally, our method is tested with adversarial
prompts and on image-to-video diffusion models, and achieves
above 0.90 accuracy on both settings. Our method also shows its
interoperability by improving the performance of other defenses
when combined with them. We will publish our constructed video
dataset1 and code2.

Warning: This paper analyzes unsafe generative AI videos
and may contain content that is sexual, offensive, or otherwise
disturbing.

I. INTRODUCTION

Recently, video generation models (VGMs) [1]–[8] have
improved significantly and can generate coherent and high-
quality videos encompassing a wide variety of themes. As the

1https://huggingface.co/datasets/pypy/unsafe generated video dataset
2https://github.com/py85252876/UVD

capabilities of VGMs improve, there is growing concern about
the safety issues they bring. For example, the “Executive Order
on the Safe, Secure, and Trustworthy Development and Use
of Artificial Intelligence”3 from the White House emphasizes
“testing and safeguards against discriminatory, misleading,
inflammatory, unsafe, or deceptive outputs” in Section 10;
In April 2024, NIST released the AI Risk Management
Framework, which explicitly tries to understand the ability of
generative models to synthesize unsafe content. We notice on
websites like Civitai4 that users can share their prompts and
generated content. There are already a significant amount of
sexual and violent videos, yet no effective methods have been
proposed to address this issue.

To examine the capacity of VGMs to generate unsafe
videos, we use prompts collected from the 4chan and Lexica
websites [9], [10]; These datasets are originally used to guide
T2V models in generating unsafe images. After filtering du-
plicate prompts and removing those that generated low-quality
videos, we collect an initial dataset of 2112 unsafe videos.

To verify these generative videos are indeed unsafe and
cause unpleasant feelings, with IRB approval, we recruit
online study participants to rate those videos. Specifically,
we first cluster unsafe videos and conduct thematic coding
analysis [11]. Through two rounds of discussions, we iden-
tify five main categories of unsafe videos: Distorted/Weird,
Terrifying, Pornographic, Violent/Bloody, and Political. To
obtain objective annotations for these unsafe videos, we recruit
participants via Prolific to label the videos according to the
defined categories. We initially recruit 600 participants. After
filtering based on attention checks and completion rates, we
receive 403 valid response reports. Each participant views 30
videos, assessing whether they are unsafe, and categorizing
them accordingly. From our initial set of 2112 videos, 937 are
consistently identified as unsafe. We compile all videos, their
labels, and corresponding prompts into a dataset. This is the
first dataset of unsafe videos generated by VGMs.

Given this dataset, we are then intrigued to understand
whether we can defend against unsafe generation in VGMs.
That is, can we ensure VGMs will never generate unsafe
content? Note that this is related to defense against deepfakes,
but deepfakes are primarily focusing on facial videos [12]–
[17], while our focus is on VGMs in general (various types,
not just facial videos). There are existing solutions [9], [10],

3https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/3
0/executive-order-on-the-safe-secure-and-trustworthy-development-and-use
-of-artificial-intelligence/

4https://civitai.com/

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241167
www.ndss-symposium.org

https://huggingface.co/datasets/pypy/unsafe_generated_video_dataset
https://github.com/py85252876/UVD
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://civitai.com/

[18]–[26] for image generative models that addressed the
unsafe generation problems. For example, Schramowski et al.
[9] design a safety guidance strategy that uses pre-defined
safety prompts to redirect potentially harmful prompts. Then,
Gandikota et al. [21] suggest removing harmful concepts from
the model’s understanding by fine-tuning the entire model.
Li et al. [18] note the text dependency of previous methods
and propose removing unsafe visual representations to protect
generated content. Qu et al. [10] implement a detection model
to evaluate the output content without interfering with the gen-
eration process. However, detecting unsafe content in videos
is much more challenging than in images because videos
contain more information (both spatial and temporal) and
require significantly more computational resources to generate.
Therefore, we need to rethink methods for detecting unsafe
content in the video domain.

As detailed in Section IV, we categorize existing solutions
for image generative models as either model-free (no need
to look into model internals) or model-write (need to modify
model parameters or settings) approaches. These two types
of methods can only employ the final results of the diffusion
process, limit further defensive actions, or require significant
computational resources to update model parameters. Never-
theless, we propose a middle-ground, model-read approach
that leverages “read access” of the diffusion model and detects
unsafe content within the diffusion process. The model-read
method is less rigid than the model-free approach, which only
detects the model’s final output. It also avoids the extensive
time and computational resources needed for the model-write
approach. We call our method Latent Variable Defense (LVD).
LVD leverages the intuition that generative models, such as
VAE [27] and diffusion models [28], are trained to learn latent
space representation, and in these representations, samples
that are close in the latent space result in similarly generated
content [27]. As shown in Figure 1, we establish classifiers to
analyze the intermediate results of the diffusion process, which
is quite different from the existing model-free methods. When
we suspect the result is unsafe, we can terminate the diffusion
process early, saving significant computation resources. All ex-
perimental results on three SOTA VGMs show that compared
to working with the final result, our approach can save up to
10× computation time, while achieving comparable detection
accuracy (around 92%).

Contributions: We make the following contributions.

• We demonstrate that VGMs have a strong capability to
synthesize unsafe content.

• We construct an unsafe generated video dataset from the
SOTA open-sourced VGMs. Unsafe categories are generated
using data-driven methods. Data annotations are completed
by 403 participants recruited through Prolific.

• Using our unsafe video dataset, we propose LVD to mitigate
the generation of unsafe videos. LVD leverages DDIM
characteristics to detect unsafe content during inference.

• We test our defense on three open-source SOTA VGMs,
conducting comprehensive experiments to assess the defense

xt

Prior Model-free DefenseOur Model-read Defense

“Pikachu is
holding a gun
on the street.”

x0DDIM Reverse Process

Video Diffusion Model

Fig. 1: Unlike previous model-free defense methods for image
diffusion models, we proposed utilizing the DDIM sampler’s
deterministic characteristics and using the intermediate denois-
ing outputs to assess whether the generated video is unsafe.
See detailed description in Section IV.

performance under different parameter settings. Results
show our defense can achieve above 0.91 accuracy on all
three models. We further assess our defense’s robustness,
generalization ability, and interoperability to show the ef-
fectiveness of our method.

II. BACKGROUND

A. Diffusion Models

Diffusion models [28], [29] are state-of-the-art generative
models that have been used in various modalities, such as
image [30], [31], audio [32], and video generation [2], [3], [5].
The fundamental concept behind diffusion models consists of
two phases: the diffusion process and the denoising process.
The diffusion process, also called the forward process, itera-
tively adds noise from a standard normal distribution.

The noise schedule {αt}Tt=1 is set to control the magnitude
of noise added in the diffusion process. Utilizing a reparam-
eterization trick, we can express the noise sample xt at any
step t in the forward pass, given original data x0, as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt (1)

where ᾱt =
∏t

i=1 αi.
In contrast, the denoising process aims to remove noise from

a noisy image xT , where xT ∼ N (0, 1) and ultimately denoise
to a clean image x0. A neural network (e.g., U-Net) ϵθ is
usually trained to predict the noise that needs to be removed
at step t. The loss function for training the denoising network
can be represented as:

Lt(θ) = Ex0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥22

]
(2)

B. Video Diffusion Models

To apply diffusion models [28], [33] to video generation,
these models need to understand spatial information and main-
tain consistency and coherence in the temporal dimension.
Unlike traditional diffusion models [28], [33], which work
mostly in 2D, VGMs must incorporate temporal layers to learn

2

the motion logic of the object over time [8]. With the new
requirement for generative objectives, different approaches
to training VGMs exist. Based on training strategies, we
categorize them into training from scratch, fine-tuning on
video data, and training-free models.

Among the three approaches, fine-tuning stands out as an
efficient strategy and demonstrates superior performance, and
becomes the focus of this study (and we elaborate on the
other two approaches in Appendix C). Most models adopt this
approach, as it balances synthesis quality and the consumption
of training resources. This approach requires selecting an
appropriate pre-trained image generator as the backbone. And
currently, existing works [1]–[3], [5] usually select Stable
Diffusion [30] as the backbone. After adding temporal con-
volution and attention layers to ensure consistency across
multiple frames, the model can be trained directly using video
data. During training, researchers need to freeze the parameters
of the spatial layers and focus on training the inserted temporal
layers to learn the motion logic of objects. Once the model
understands temporal dynamics, the generation quality can
be further improved using a cascade approach. This involves
dividing the generation process into a base stage and a refine
stage [7]. In the base stage, a large amount of low-resolution
video data helps the model understand the generation objective
and produce a low-quality video. In the refining stage, a small
number of high-resolution video data is used to train the
model. This stage enhances the quality of the video generated
in the base stage, ultimately achieving good generation results.

C. Deepfake Techniques

For generation models capable of producing high-quality
content, one significant and widely recognized risk is the
issue of deepfakes—artificially generated videos that involve
the face-swapping of real people. To address the potential
threats posed by deepfakes, numerous studies have focused
on deepfake detection [12]–[17], [34]–[37]. This field aims to
determine whether an image or video is real, meaning it has
not been manipulated by human tools such as photo-editing
software or AI models. Different from deepfake detection, our
work focuses on distinguishing unsafe samples from harmless
ones. The test samples in our work are generated by VGMs;
however, in deepfake detection, all such samples are classified
as “unreal”. Due to the differences in task objectives, these two
types of methods are not directly comparable. More details
about deepfake detection can be found in Appendix D.

Apart from deepfake detection, another equally important
aspect related to deepfake attacks is deepfake generation [38].
We notice that VGMs can be used maliciously in this field. To
explore this, we simulate a scenario in which malicious users
use VGMs to synthesize deepfake videos of a specific person.
During the generation process, we use LVD against deepfake
generation. The case study is presented in Section V-F.

D. Threat Model

Our study assumes a simple threat model that involves only
two parties: malicious users and model owners. The goal of

the malicious user is to use the video generation model to
synthesize unsafe videos. These users have unsafe prompts and
try to feed those prompts to the model. Moreover, malicious
users potentially have the capability to use the optimization
method to build adversarial prompts. They can access the
model output but cannot access the internal values.

On the other hand, model owners have access to the model’s
intermediate outputs and internal parameters. They plan to
design an effective method to prevent the model from being ex-
ploited by malicious users while ensuring its ability to generate
content for normal prompts. Specifically, this approach aims
to achieve this without altering the pre-trained parameters. The
proposed method relies solely on the model’s intermediate
outputs and does not make changes to the synthesis process
or adjustments to its parameters.

III. GENERATE UNSAFE VIDEOS

We first explore the feasibility of video generative models
(VGMs) to synthesize unsafe videos. With positive results, we
then recruit participants to identify and label unsafe videos,
constructing an unsafe video dataset.

A. Unsafe Prompt Collection

The prompts we choose to generate unsafe content are from
two unsafe prompt datasets: the dataset from Qu et al. [10] and
the I2P (Inappropriate Image Prompts) dataset [9]. These two
datasets contain many unsafe prompts, and all have been tested
on the text-to-image generation models. Since most current
VGMs [1]–[5] still use the pre-trained T2I model [30] as their
backbone and have similar spatial understanding, we first use
those datasets to explore the capabilities of VGMs. Based
on the content quality, we then select prompts to build our
experimental dataset.

Specifically, Qu et al. [10] collect their unsafe prompts from
4chan5 and Lexica6. 4chan is an anonymous platform where
people post unsafe content, including sexual, violent, hateful,
etc. After preprocessing the raw data from 4chan, they collect
500 prompts that can generate high-quality images. Unlike
the 4chan website, Lexica is a website that provides prompts
directly. Thus, they use 66 keywords related to the unsafe
categories to query the Lexica website. After data cleaning,
they collect 404 prompts from Lexica.

The I2P dataset is collected by Schramowski et al. [9], and
its prompts are also from the Lexica website. The authors
use keywords related to their seven unsafe categories to query
Lexica. They design 26 keywords and collect 250 text prompts
for each word. Because some prompts can have multiple
keywords simultaneously, they finally collect 4703 prompts
in their datasets after removing the duplicate prompts.

B. Theme Summary

In our work, we combine all unsafe prompts and remove
duplicates from the two datasets. These unmodified prompts
are then input into MagicTime [1] to conduct text-to-video

5https://www.4chan.org/index.php
6https://lexica.art/

3

https://www.4chan.org/index.php
https://lexica.art/

Pornographic Violent/BloodyDistorted/Weird Terrifying Political

Fig. 2: Based on our thematic coding analysis, we identify five categories of unsafe videos from the generated videos. For
each category, we select the first frame of the representative videos to illustrate our findings.

generation. Because our work is in the video domain and the
model differs from the previous work [9], [10], [21], [31], we
cannot directly use the unsafe categories defined in their paper.

Similar to the previous work [10], we want to use a
data-driven approach to identify the scope of unsafe videos.
First, we use the k-means method [39] to categorize the
generated videos into several clusters. Then, we select the most
optimized cluster number and do the thematic coding analysis
to define the unsafe category’s name.

Since image feature extractors are much more powerful than
video feature extractors due to the larger amount of training
data, and because we primarily focus on the semantic infor-
mation of each video, we select the CLIP model (CLIP-ViT-
L-14) as our feature extractor and process all frames for each
video. We calculate the mean of all frame feature vectors from
each video to obtain a single feature vector that represents the
video. Then, we use the k-means clustering algorithm to get
the video feature clusters and set the possible cluster number
from 2 to 30. According to the elbow method [40], we find that
when we set the cluster number to 23, the generated videos
would have the best cluster performance.

The next step is to identify unsafe video categories. Since
no unsafe video detector currently exists, we cannot remove
unsafe videos before performing clustering. Some video clus-
ters consist of normal videos that require manual inspection.
We apply thematic coding analysis [11] in our work, which
is usually used in social science, to conclude the theme by
qualitatively analyzing data. To get better results, we collect
10 videos from each cluster, and three authors of our work
write the text description for each cluster. This is the initial
version of our code book, and then we calculate the initial
Krippendorff’s alpha [41] is 0.39, and Fleiss’ kappa [42] is
0.56. Then, we discuss the code and try to refine our code
book. We build an overall text description for each cluster and
change some of our initial code based on that. For our second
code book, Krippendorff’s alpha achieves 0.83, and the score
of Fleiss’ Kappa is 0.94. Both of these scores represent that
we have an agreement for almost every cluster. The final step
is to group the clusters, as shown in Appendix I. Although
some videos are from different clusters, they can be the same
type of unsafe videos. After removing the harmless video
cluster, we conclude five unsafe categories: Distorted/Weird,

Terrifying, Pornographic, Violent/Bloody, and Political. We
show the videos represented for each category in Figure 2.
In our work, we use these five unsafe categories to classify
unsafe videos and design our defense.

C. Data Collection

We design an online survey based on the five categories of
unsafe videos identified through thematic coding analysis [11].
Our survey contains 2, 112 unsafe videos produced by Mag-
icTime [1]. Unlike previous studies that use authors to label
inappropriate content [10], we aim to reduce subjective bias
and gather more authentic and neutral data. Initially, we obtain
approval from the institute’s IRB protocol and subsequently
create the survey using Qualtrics website. Participants for an-
notating unsafe videos are recruited through Prolific platform,
and compensation is provided. We report human subject’s
demographics in Appendix H.

Given the sensitive nature of our survey, we include a
disclaimer on the first page of Qualtrics and the Prolific home-
page, stating that the content contains unsafe information.
Participants need to be over 18 years old and are informed that
they could withdraw from the survey at any time if they feel
uncomfortable without facing any penalties. Each participant
is assigned 30 videos and one additional attention check. If
participants consider a video to be unsafe, they are prompted
to categorize it into one of five categories: Distorted/Weird,
Terrifying, Pornographic, Violent/Bloody, and Political. An
“Other” option is provided for any videos that do not fit these
categories. Participants are compensated at a rate of $10.15/hr.

We first conduct a pilot study to validate the design and
logic of our Qualtrics survey. We recruit 20 participants to test
our questionnaire. The goal of the pilot study is to verify the
appropriateness of our time settings, the number of questions,
and the attention check. After examining the responses submit-
ted by each participant, we find no modifications are necessary
for the questions or the attention check. Accordingly, we
decide to recruit 600 participants for the main survey study.
These 600 participants for the main survey do not overlap with
those who participated in the pilot study.

From the initial pool of 600 participants, 197 individuals
fail the attention check and are subsequently excluded from
the study. For these participants, we still provide 10% of their

4

compensation through bonus payments. As a result, a total of
403 participants successfully complete the labeling task for
30 generated videos. We first categorize all videos deemed
“unsafe” according to participants’ labels. Specifically, every
video is labeled by at least two participants in our survey. Next,
we clean the data by integrating our assessments of “unsafe
video”. For example, if a video is labeled as “unsafe” and
categorized as Pornographic, it is retained in the Pornographic
category only if more than half of the participants who
mark it as “unsafe video” also identify it as Pornographic.
After data cleaning, the videos are categorized based on
participants’ labels and our assessments. We get 590 videos as
Distorted/Weird, 579 as Terrifying, 445 as Pornographic, 204
as Violent/Bloody, and 39 as Political.

We allow participants to suggest new unsafe categories
during our online study. However, because there is not a
sufficient number of participants who reach a consensus on
any additional category, and because some of the suggested
categories are similar to our defined ones (e.g., sexually
explicit), we maintain the five unsafe categories generated
through thematic coding analysis.

Potential Bias. In this work, we recruit participants to help
identify and label unsafe videos to minimize subjective bias.
However, we acknowledge that potential biases may still exist
in the data collection and annotation phases, and we provide
more details about this in Appendix H.

IV. DEFENSE METHODOLOGY

Several studies have discussed potential safety issues within
image generation models, and proposed defense methods.
We group these existing defense methods into two clusters:
model-write defense [9], [18], [21]–[26] that modifies part
of the model weight or generation process, and model-free
defense [10], [19], [20] that based on input and/or output
filtering and does not require access to the model internal.
Because of their different underlying design purposes, these
two methods vary in the level of model access. The model-
write method typically operates in a white-box scenario, while
the model-free defense can function in a black-box setting.

Model-write defenses change or update the model’s genera-
tion process or parameters, which might affect the model gen-
eration quality, and usually need to fine-tune the model, which
takes time [18], [21], [23]–[26]. On the other hand, model-
free defense trains classifiers/detectors that predict whether the
input prompt and/or output result is harmless. Input prompt
filtering is vulnerable to adversarial prompts and jailbreak
attacks (described briefly in Section VII-B), while output
filtering still needs model owners to first generate the results
and also takes time (generating videos takes tens of times
longer than generating images). We provide more details of
existing defenses for image diffusion models in Section VII-A.

A. Overview of Our Method

Given the drawbacks of both model-write and model-free
approaches, we propose a model-read approach, which sits

between these two defense mechanisms and works in the gray-
box scenario. At a high level, we only require “read access”
to the diffusion model in order to detect unsafe content during
the diffusion process. This “read access” allows LVD to gather
additional information throughout the diffusion process. While
LVD shares similarities with the model-free approach—since
both rely on training detectors—it surpasses the model-free
method by leveraging the extra information obtained from the
diffusion model.

With this new detection design, the model-read defense
is more robust than input filtration (because it is text-
independent) and more efficient than output filtration (as it
does not require waiting for the entire generation process to
complete). Note that our model-read defense can also poten-
tially collaborate with the other two defenses (as discussed
in Section IV-C), providing a more comprehensive defense.

Our solution relies on the insight that generative models are
designed to learn latent space representations. We conjecture
that the same type of unsafe videos are generated by latent
variables close to each other in the latent space.

B. Latent Variable Defense

In this section, we introduce our defense called Latent
Variable Defense (LVD). Our method is based on the DDIM
sampler [33] used in modern diffusion models for video/image
generation, which can significantly enhance inference speed.

DDIM Foundation. Compared to the traditional DDPM’s
Markovian sampling process [28], DDIM is non-Markovian
and deterministic. Different video diffusion models may vary
in structure due to distinct design choices [1], [3], [4]. How-
ever, to efficiently generate samples, these models move the
diffusion process to the latent space. The reverse process in
these models can be represented as:

zt−1 =
√
ᾱt−1

(
zt −

√
1− ᾱtϵθ(zt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t · ϵθ(zt, t) + σtϵt

where σt denotes the hyper-parameter that controls the level
of randomness in the forward process [33], and other symbols
share the same notations as in Section II-A. When the σt = 0
for all t, the whole reverse/forward process is a deterministic
trajectory. Song et al. [33] prove that when both reverse and
forward processes are fixed, model sampling steps can be
accelerated by defining the reverse process on a subset of
the original T steps and still get the high-quality output. For
a video/image diffusion model, the inference steps can be
accelerated to only k steps τ = {τ1, τ2, ..., τk} (these k steps
evenly partition the original T steps). The accelerated DDIM
sampler equation can be represented as:

Pr
[
zτi |zτi+1 , z0

]
=

Pr
[
zτi+1

|zτi , z0
]
Pr [zτi |z0]

Pr
[
zτi+1

|z0
] (3)

where τi < τi+1−1 and τk ≤ T ; z refers to the latent variable.
For each latent variable zτi in the reverse process, it does
not have randomness and is controllable. Given the specific

5

latent variable zτi , the final denoised output z0 is also constant.
Therefore, we want to use the DDIM deterministic denoising
trajectory to design our defense method.

Unlike the previous model-free methods [10], [19], [20],
which rigidly use the final synthesis images as input for
detection, we want to train our detection model M using
the intermediate latent variables at every step, from τk to τ1.
This approach helps build a more agile and integrable defense
mechanism.

Defense Algorithm. The details of LVD is shown in Algo-
rithm 1. According to Song et al. [33], setting the number of
denoising steps to k = 50 achieves nearly the same quality as
using T = 1000 steps, saving time and computing resources.
Therefore, We also set the number of denoising steps to 50
in our experiment, resulting in our defense mechanism that
involves 50 detection models, M1,M2, ...,M50. We use the
latent variable at i-th step to train each Mi. It is important to
note that we do not directly feed the noised latent variable zτt
into the detection model. While Equation 1 demonstrates how
to obtain the denoised sample during the denoising process
at the pixel level (represented by variable x), we adapt this
process to work in the latent space (represented by variable
z). Given timestep τt and noised sample zτt , we can calculate
the denoised latent z0τt

7 and use it as input for the detection
model. The detection results at i-th step can be represented as
si = Mi(z

0
τi). For each data point, our mechanism can obtain

a vector of scores s1, .., sk that helps us leverage a voting
strategy to determine whether the current video is unsafe.
LVD leverages detection models to determine at each step

whether the intermediate result is unsafe and makes the
final decision based on cumulative scores. We introduce two
hyperparameters, λ and η. η improves LVD’s efficiency by
considering only the first η < k steps, and λ represents the
voting threshold. As displayed in Algorithm 1, we do not apply
λ to each step (line 5) because doing so can lead to unstable
and noisy predictions due to the inherent variability in each
step’s output. Instead, we use λ as a voting threshold applied
to the cumulative count of positive (unsafe) detections. This
strategy reduces the risk of outlier predictions and improves
the robustness of the detection process.

To further improve efficiency, LVD can dynamically check
the score vector for the generated sample. At the i-th step,
the score for the generated video is given by score =∑k

j=i Mj(z
0
τj). If the score is greater than or equal to

λ · (k − i+ 1), LVD can classify the current video as unsafe.

C. Interoperability with Existing Defenses

Since our method is applicable to all diffusion models, we
want to briefly demonstrate how it can be combined with
existing defense methods. We showcase this using both model-
write [9] and model-free methods [10].

Interoperate with Model-free Defense. For model-free de-
fense, integrating with LVD is straightforward. For example, in

7z0τt represents denoised sample at the t-th step as calculated by Equation 1,
which differs from the final denoised output z0.

Algorithm 1 Latent Variable Defense (LVD)

Input: Input prompt cp, detection models across k step
M1, . . . ,Mk, a set of sampling steps τ1,. . . ,τk, and de-
fense parameters λ, and η. D is the decoder in the video
generation model.

1: Sampling the initial latent variable zτk+1
∼ N (0, 1)

2: for i← k to k − η + 1 do ▷ Perform η steps.
3: zτi ← ϵθ(zτi+1

, τi+1)
4: Get denoised z0τi from zτi ▷ By Equation 1
5: si ←Mi(D(z0τi)) ▷ 1: unsafe, 0: safe.
6: end for

Output: 1

(∑k
j=k−η+1 sj ≥ λ · η

)
▷ 1: unsafe, 0: safe.

Unsafe Diffusion [10], with a diffusion model set to k denois-
ing steps, the combined defense pipeline can be represented
as:

Mcombine(G(cp)) =γ · 1

(
k∑

i=1

si ≥ λ · k

)
+(1− γ) (Mu(D(z0))

Here, D denotes the decoder component of the VGM, cp
represents the input prompt, and γ is a hyperparameter used
to balance the combined system. We denote the multi-headed
safety classifier from Unsafe Diffusion as Mu. Mu takes
the output sample from the decoder, D(z0), as input for
evaluation.

Interoperate with Model-write Defense. For the model-
write defense methods, besides updating the model
parameters [9], [18], [23]–[26], we can combine our
approach with text-dependent methods [9], [22]. In this
section, we briefly discuss how to integrate our method
with SLD [9]. The primary goal of SLD is to shift unsafe
concepts during the inference step. In their original work,
they use the difference between noise from the safety prompt
cs and the input prompt cp to determine whether to guide
the generation direction in the opposite direction. However,
to keep the changes minimal, they set a warmup step δ. This
is because the noise difference is significant at the beginning
of the inference process. In the early stages of inference,
LVD can achieve high detection accuracy. Therefore, we
can replace the calculation of noise difference µ(cp, cs)
at each step with our LVD. At i-th step, ϵ̄θ(zτi , ep, es) =

ϵθ(zτi , ep) + w(ϵθ(zτi , ep)− ϵθ(zτi , es)), if M(zτi ; η, λ) > β

ϵθ(zτi , ep) + w(ϵθ(zτi , ep)− ϵθ(zτi)), otherwise
(4)

where ep and es are text embedding for cp and cs, β is the
pre-defined threshold value, and w is the guidance scale.
In Equation 4, when LVD detects the generated content is
unsafe, the VGM can redirect the generation direction that is
opposite to the safety concept.

D. Discussion

It is important to note that LVD performs detection based on

6

intermediate samples during the generation process, making
it a gray-box defense method. Furthermore, LVD does not
modify the original model in any way. It simply detects unsafe
content during the generation process and can interrupt it early
if a sample is flagged as unsafe.

When using LVD alone, there is no difference under white-
box or gray-box scenarios. LVD is a plug-in method that can
be easily interoperated with other approaches. In white-box
scenarios, with access to more information (model architecture
and parameters), LVD can work with model-write methods
to offer a stronger defense (as shown in Section VI-C).
This combined mechanism ensures that even if model-write
methods fail to block unsafe concepts, LVD can still prevent
unsafe generation.

TABLE I: The number of different categories of unsafe videos
generated by various models. One unsafe video can belong to
multiple unsafe groups.

Model Distorted
or Weird Terrify Porn Violent

or Bloody Political Total

MagicTime [1] 590 579 445 204 39 937
VideoCrafter [3] 571 564 353 197 79 931
AnimateDiff [4] 586 577 391 204 75 945

V. EVALUATION

A. Experiment Setup

Preparation. As mentioned in Section III-C, we recruit 600
participants via the Prolific platform to label 2, 112 videos
generated by MagicTime [1]. Moreover, since AnimateDiff [4]
and VideoCrafter [3] both use Stable Diffusion [30] as their
backbone (MagicTime and AnimateDiff used SD v1-5, and
VideoCrafter used SD 2.1; their semantic-level understanding
of unsafe prompts is similar). After carefully reviewing the
label information from participants, we annotate the videos
generated by the other two models. The number of videos in
different unsafe groups generated by the various video diffu-
sion models is presented in Table I. In the evaluation process,
we use 20% unsafe videos to build an evaluation dataset
to test defense accuracy. We set k = 50 following existing
literature [33], as k = 50 can already ensure high-quality
generation while saving significant time. More details about
the experimental preparation can be found in Appendix A.

Evaluation Metrics. In our experiments, we not only present
the overall accuracy of the defense method but also emphasize
the TPR (true positive rate, for correctly classifying unsafe
videos) and TNR (true negative rate, for correctly classifying
harmless videos). The main reason for considering these two
values is to align with our objective of ensuring that the
defense mechanism does not interfere with the generation
of harmless videos. If detection’s accuracy is high but the
TNR is low, it indicates that many harmless videos are being
incorrectly detected as unsafe.

Furthermore, to illustrate the relationship between TPR and
FPR (false positive rate, for misclassifying safe videos), we use

the Area Under the Receiver Operating Characteristic Curve
(AUC ROC) to demonstrate the defense performance of LVD.

B. Impact of Inference Steps

We notice the efficiency of our method is significantly
influenced by the hyperparameters λ and η, as shown in Algo-
rithm 1. In our defense mechanism, λ controls the degree of
trust in the detection accuracy at different denoising steps,
while η determines how many steps the LVD takes before
performing a detection analysis. LVD is designed based on
the characteristics of DDIM [33]. Therefore, we first aim to
explore the detection success rate of the detection model at
different denoising steps in order to help us get the range
of λ and η. We trained detection models on each type of
unsafe video generated by the generative model separately.
The experiment results for five groups of unsafe videos are
in Appendix G. In this section, we trained 50 models for each
unsafe category and totally trained 250 detection models for
each generation model. The evaluation set is not utilized here
because our goal is to explore the performance of each group
of detection models across all denoising steps. The tests are
conducted separately for each group. For the Pornographic
group, only unsafe Pornographic videos are used to assess its
performance.

According to the results illustrated in Figure 7, it can be
observed that model is capable of achieving perfect detection
with MagicTime [1] and AnimateDiff [4] at the initial phase
of the synthesis process, but shows relatively poor detection
accuracy with VideoCrafter [3].

C. Impact of η and λ

Based on the results observed in Section V-B, we can
set the ranges of η and λ for the three models used in
our experiment. For MagicTime [1], the detection accuracy
remains high even during the initial stages of the denoising
process. Thus, we believe that at a lower η, the detection
accuracy is already perfect. This is because the model is able
to reconstruct the outline of the denoised object approximately
by the early step, enabling the detection model to make
an accurate judgment based on this outline. Conversely, for
VideoCrafter [3], the initial stages of the denoising process fail
to generate reasonable object representations. Therefore, we
think LVD for VideoCrafter might need a higher η to achieve
the best detection accuracy. Similarly, due to VideoCrafter’s
inferior detection accuracy, we can impose looser conditions
by setting a lower λ value to ensure that every potentially
unsafe video is detected.

When conducting evaluations on LVD, we ensure the bal-
ance of the samples under testing. The number of class 0
(harmless video) and class 1 (unsafe video) samples is equal.
Based on the result presented in Figure 7, we believe it is
unnecessary to set the range of η from 0 to 50. We set η to
range from 1 to 20 and assign λ values of 0.3, 0.6, and 1 in
our work.

7

TABLE II: Illustrates the defense accuracy of LVD employed on MagicTime [1], AnimateDiff [4], and VideoCrafter [3] under
varying settings of the hyper-parameters η and λ. We highlight the best detection performance (based on accuracy) for each
η. In addition, we also present the TNR (0: harmless video) and TPR (1: unsafe video). We think this can provide insights
into the method’s performance in correctly identifying benign and unsafe instances, respectively.

Model Evaluation
Metrics

Latent Variable Defense # unsafe
samplesη = 1 η = 3 η = 5 η = 10 η = 20

0.3 0.6 1.0 0.3 0.6 1.0 0.3 0.6 1.0 0.3 0.6 1.0 0.3 0.6 1.0

MagicTime [1]
TNR 0.68 0.34 0.67 0.90 0.40 0.64 0.95 0.40 0.77 0.99 0.74 0.98 1.00

203TPR 0.95 0.98 0.95 0.91 0.99 0.97 0.87 0.99 0.99 0.84 0.99 0.99 0.81
Accuracy 0.81 0.66 0.81 0.90 0.70 0.81 0.91 0.70 0.88 0.92 0.87 0.99 0.90

AnimateDiff [4]
TNR 0.73 0.45 0.73 0.93 0.54 0.72 0.97 0.51 0.74 0.99 0.59 0.88 1.00

297TPR 0.98 1.00 0.97 0.89 0.98 0.96 0.85 0.99 0.96 0.81 0.98 0.95 0.74
Accuracy 0.85 0.72 0.85 0.91 0.76 0.84 0.91 0.75 0.85 0.90 0.79 0.92 0.87

VideoCrafter [3]
TNR 0.54 0.31 0.63 0.87 0.50 0.65 0.93 0.47 0.71 0.95 0.56 0.87 1.00

307TPR 0.89 0.99 0.95 0.80 0.98 0.96 0.75 0.99 0.94 0.69 0.98 0.94 0.66
Accuracy 0.72 0.65 0.79 0.84 0.74 0.81 0.84 0.73 0.83 0.82 0.77 0.91 0.83

Table II demonstrates that the detection accuracy of LVD
increases with higher η values. We highlight the best detection
accuracy obtained at different η values.

Except when η equals 1, the value of λ does not affect
the results. We observe four different η values and note an
interesting phenomenon. When η is low, such as η = 3 or η =
5, better detection accuracy is usually achieved when λ equals
1. However, as η increases, the most accurate detection results
are often obtained when λ is 0.6. This trend is consistent with
the detection results for three VGMs.

We think this occurs because, with a high η, setting λ to
1 makes the model’s detection very stringent. In other words,
LVD must consistently identify a sample as unsafe at every
denoising step to finally classify it as an unsafe video. When
η is low, LVD needs to be more stringent at each denoising
step due to insufficient data for each sample. However, as η
increases, a high λ value can cause LVD to misclassify some
samples because a few denoising steps might indicate safety,
affecting the overall judgment. To validate our hypothesis, we
fix λ at 0.3, 0.6, and 1.0. Then we present the TPR, TNR,
and accuracy for η ranging from 1 to 50 from MagicTime [1]
in Figure 5. It is evident that when λ is 1, and η is low, the
accuracy is higher than when λ is set to 0.3 or 0.6. However,
as η increases, accuracy decreases. When λ is 1, the TPR value
also rapidly decreases as η increases.

Therefore, when η is set to 20, the best detection perfor-
mance is achieved with λ equal 0.6. Under this parameter
setting, the TNR value remains at 0.98, ensuring efficient
detection of unsafe videos while minimizing the impact on
harmless video generation. More details on how η and λ affect
detection accuracy can be found in Appendix E.

D. Impact of Different Unsafe Categories

Additionally, we want to examine whether the detection
performance of LVD is affected by targeting different unsafe
categories. First of all, we classify the data samples in the
evaluation dataset according to their unsafe categories. Then,
using the optimal λ values obtained from Table II, we evaluate
the model and present the results in Figure 3.

In Figure 3, we show the detection accuracy for unsafe
categories under different η settings. We find that for all video

TABLE III: Compared the optimal accuracy of our defense
mechanism for MagicTime [1] under different η values with
existing model-free works [10].

Evaluation
Metrics

Latent Variable Defense Unsafe
Diffusion [10]η = 3 η = 5 η = 10 η = 20

TNR 0.90 0.95 0.99 0.98 0.56
TPR 0.91 0.87 0.84 0.99 0.98

Accuracy 0.90 0.91 0.92 0.99 0.77

generation models, when η is set to a low value (i.e., using the
initial intermediate outputs of the model’s denoising process),
the detection accuracy for Political samples is lower than
that for other unsafe samples. We believe this is because the
sample size in the Political category is much smaller than in
other categories. As a result, the detection model is prone to
overfitting the training data and does not effectively learn the
common features of this category during training. When η is
small, relying on a limited number of detection results cannot
achieve accurate detection. However, the results show that
when η = 20, LVD can achieve nearly 0.95 detection accuracy
for Political unsafe samples generated by three VGMs. It can
be clearly observed that the detection accuracy for the other
unsafe video categories is balanced and improves with higher
values of η. This phenomenon is aligned with Table II and
demonstrates that LVD can effectively detect unsafe video
samples of all categories.

E. Comparison with Existing Methods

In this section, we aim to compare our approach with
existing methods. Since ours is the first work to focus on
unsafe synthesis in the video domain, we only compare against
defense methods designed for image generation models. How-
ever, many model-write defense methods are designed to
change the output object and require adjustments to the model
itself or modifications to the model’s attention matrix [9], [18],
[21], [23]–[26]. Given that the use of attention mechanisms in
VGMs differs from that in image generators [30]. Additionally,
MagicTime [1] employs a more complex DiT-based archi-
tecture [43]. We primarily compare our method with Unsafe
Diffusion [10] and Safe Latent Diffusion [9] (SLD).

Comparison with Model-Free Methods. In Table III, we

8

Pornographic

Violent
& Bloody

Distorted
& WeirdTerrifying

Political
0.25

0.50

0.75

1.00

= 3

Pornographic

Violent
& Bloody

Distorted
& WeirdTerrifying

Political
0.25

0.50

0.75

1.00

= 5

Pornographic

Violent
& Bloody

Distorted
& WeirdTerrifying

Political
0.25

0.50

0.75

1.00

= 10

Pornographic

Violent
& Bloody

Distorted
& WeirdTerrifying

Political
0.25

0.50

0.75

1.00

= 20

MagicTime AnimateDiff VideoCrafter

Fig. 3: Detection accuracy for different unsafe categories for MagicTime [1], AnimateDiff [4], and VideoCrafter [3].

TABLE IV: Comparison of our method with Safe Latent Diffusion [9] for defending against content generated from NSFW-
200. For each η, we set λ to align with the value that achieves optimal detection accuracy in Table II. The evaluation metric
for SLD is the nudity removal rate, and all parameter configurations follow the original paper. “# Unsafe Samples” represents
the actual number of unsafe samples generated by each model.

Model Latent Variable Defense Safe Latent Diffusion # Unsafe
Samplesη = 3 η = 5 η = 10 η = 20 Weak Medium Strong Max

MagicTime [1] 0.87 0.88 0.91 0.97 0.52 0.63 0.73 0.86 172
AnimateDiff [4] 0.90 0.91 0.93 0.96 0.43 0.62 0.75 0.78 188
VideoCrafter [3] 0.84 0.88 0.89 0.91 0.67 0.71 0.73 0.75 181

compare the optimal detection accuracy of our defense mech-
anism under different η values with the detection performance
of Unsafe Diffusion [10]. To ensure a fair comparison, we
keep the number of training samples and other parameters
consistent. Although the original work use an image classifier
as the detection model, our current study deals with video
content. To maintain fairness in the comparison, we also use
VideoMAE as the detection model for Unsafe Diffusion.

The results show that our defense mechanism significantly
outperforms Unsafe Diffusion in terms of detection accuracy.
Although Unsafe Diffusion [10] achieves TPR value of 0.99
for unsafe videos, it correctly identifies only 0.56 of harmless
videos. In contrast, our defense mechanism attains TNR values
of 0.90, 0.95, 0.99, and 0.98, respectively. This indicates that
Unsafe Diffusion is likely to misclassify a large number of
safe samples, thereby affecting normal user experience.

Furthermore, we observe that sample generation time varies
across models, with MagicTime [1] taking the longest at
85.4±1.1 seconds per sample. When employing a model-free
safety filter [10], [19], [20], users must wait model to complete
the entire sampling before using a feature extractor to detect
unsafe content. In contrast, LVD achieves higher accuracy at
η = 5 (one-tenth of the full generation time), demonstrating a
10× improvement in computational efficiency.

More comparisons between our defense mechanism and Un-
safe Diffusion [10] on AnimateDiff [4] and VideoCrafter [3]
can be found in Appendix F.

Comparison with Model-Write Methods. We also compare
our method with model-write approaches. However, model-
write methods aim to prevent unsafe content from being
generated rather than detecting it. It is implausible to directly
compare model-write methods with LVD. Following ESD [21],

we use the nudity removal rate (NRR) to quantify the defense
performance of model-write methods. A high NRR indicates
that the method effectively disrupts most of the unsafe gener-
ation process and converts the unsafe sample into a harmless
one. Similarly, when our method detects unsafe samples,
it can serve as a trigger to block the generation of these
samples. Thus, high detection accuracy also reflects the ability
to interrupt most unsafe generation processes. In this section,
we compare our method with four different configurations of
SLD [9]. The prompts used to generate unsafe videos are the
same for both methods.

In Table IV, we present the defense success rate and noticed
despite using the “Max” configuration (threshold set to 1,
affecting normal sample generation), SLD [9] still fails to fully
prevent unsafe sample generation. We believe this is because
SLD relies on modifying classifier-free guidance during the
inference phase to avoid generating unsafe concepts. However,
when the unsafe concepts are stubborn, and the inference steps
are limited, this significantly impacts the effectiveness of SLD.
In comparison, LVD achieves over 0.90 accuracy using the
intermediate outputs from the initial 10 denoising steps.

F. Case Study Against Deepfake Generation

As mentioned in Section II-C, although LVD is not inher-
ently designed to address deepfake attacks, it can be leveraged
to defend against the generation of deepfake samples. Accord-
ing to Han et al. [44], deepfake attacks are typically targeted
at famous persons, generating pornographic content. Since this
type of content also falls within the scope of our detection, we
design this case study to evaluate LVD’s performance against
the generation of pornographic deepfake videos.

In the experiment, we collect prompts from our malicious
prompts set that are classified as pornographic. These prompts

9

TABLE V: Accuracy of LVD against four different adversarial prompt settings (Brute Force, Beam, Greedy, Reinforcement
Learning.). For each η, the value of λ matches the highlighted parameters in Table II.

Model
MagicTime AnimateDiff VideoCrafter # Adversaria

Promptsη = 3 η = 5 η = 10 η = 20 η = 3 η = 5 η = 10 η = 20 η = 3 η = 5 η = 10 η = 20
Brute Force Search 0.79 0.86 0.87 0.92 0.90 0.89 0.96 0.94 0.79 0.83 0.95 0.93 79

Beam Search 0.78 0.83 0.85 0.93 0.91 0.90 0.86 0.94 0.87 0.88 0.94 0.93 74
Greedy Search 0.84 0.88 0.89 0.91 0.85 0.82 0.93 0.92 0.83 0.81 0.94 0.93 76

Reinforcement Learning 0.86 0.91 0.91 0.99 0.91 0.92 0.87 0.97 0.90 0.91 0.93 0.96 156

TABLE VI: TPR scores of LVD in defending against deepfake
generation targeting 5 well-known persons.

Deepfake
Target MagicTime AnimateDiff VideoCrafter

Donald Trump 0.80 0.92 0.94
Vladimir Putin 0.78 0.98 0.98

Elon Musk 0.98 0.98 0.96
Margot Robbie 0.98 0.94 0.96

Taylor Swift 0.92 0.92 0.98

are then modified by replacing words such as “man” and
“woman” with famous people’s names while maintaining other
components. As a result, we create a set of 50 generalizable
pornographic prompts for each famous person. Using these
prompts, we query VGMs to generate the deepfake samples.

Since we treat unsafe samples as the positive class and focus
on them, we only present the detection TPRs as the evaluation
metric in Table VI. Despite using different target persons for
deepfake generation, the detection TPRs on all three VGMs are
mostly above 0.80. For deepfake samples of Elon Musk, the
TPR reaches up to 0.98. These results demonstrate that LVD
can effectively serve as a defense solution against generating
unsafe deepfake samples.

Takeaways: In this section, we observe the detection
accuracy of models trained with different denoising
steps to initially determine the experimental range for
η and λ. Next, we test the effectiveness of our defense
mechanism on three VGMs using the evaluation set.
Because of the design objective for our mechanism, we
focus on TNR, TPR, and accuracy. The experimental
results show that our defense mechanism provides ef-
fective protection for all VGMs in our study. Then, we
compare our method with existing defense methods for
text-to-image models, demonstrating that our defense
mechanism offers more efficient protection. Finally, we
conduct a case study to demonstrate that LVD can also
be applied to counter deepfake generation.

VI. ABLATION STUDY

A. Evaluation with Adversarial Prompts

According to Yang et al. [45], and Qu et al. [10], nor-
mal prompts can query models to generate unsafe content.
Specifically, Yang et al. conduct jailbreak experiments on
text-to-image generation models. In their study, they first

categorize model-free defense methods into three types: text-
based safety filters, image-based safety filters, and text-image-
based safety filters. In their work, they design SneakyPrompt
to avoid these safety filters. They use beam search, greedy
search, brute force search, and reinforcement learning to build
their SneakyPrompt algorithm. Then, they define an evaluation
metric called the bypass rate, which measures the number of
adversarial prompts that successfully bypass the safety filter.
Their adversarial prompts achieve a 100% bypass rate against
the text-only safety filter that built-in Stable Diffusion [30].
Furthermore, the bypass rate of their adversarial prompts
exceeds that of the manually crafted prompts by Rando et
al. [20] and Qu et al. [10].

Given that the core idea of LVD is to use a detection model
at each denoising step, it can be considered a type of safety
filter operating in the inference process. Using the currently
most potent adversarial prompt algorithm, SneakyPrompt [45],
we build adversarial datasets to evaluate the robustness of our
defense. We set different configurations for SneakyPrompt and
employ them to test LVD on three VGMs. All datasets are built
by applying SneakyPrompt to the original NSFW-200 dataset.

Due to differences in the models, the amount of unsafe
content generated by adversarial prompts varies among the
three models. For each model, we filter out the harmless videos
before conducting the experiments.

According to Table V, our defense mechanism successfully
detects unsafe content across various settings of adversarial
prompts on VGMs. When η is set to 20, LVD achieves
an accuracy exceeding 0.90 on videos generated from all
adversarial prompt sets. We attribute the success of our defense
mechanism to its focus on detecting unsafe content during the
inference steps. In contrast, adversarial prompts are typically
designed to ensure that the final generated unsafe samples can
evade safety filters.

B. Evaluation with Image-to-Video Models

After testing with the adversarial prompt dataset, a natural
idea arises for our method. our defense mechanism uses
detection models to identify denoised latent variables z0 during
the inference process of VGMs. In text-to-video models, at the
t-th step, z0 can be represented as

z0 =
zt −

√
1− ᾱtϵθ(zt, t, cp)√

ᾱt

where cp represents the input prompt guidance and other
notations aligned with the previous sections. However, in
image-to-video tasks [2], [5], [46], the primary difference is

10

TABLE VII: We used 200 selected images generated from Unsafe Diffusion [10] as inputs for AnimateDiff [4] and
VideoCrafter [3]. Our primary focus is on demonstrating the unsafe video detection performance in the image-to-video tasks
of these two models. Therefore, we mainly focus on the changes in True Positive Rate. We highlight cases where detection
accuracy from I2V tasks is much lower than that of T2V tasks due to the generation tasks changed. The generation process
for I2V is different from T2V.

Task
Latent Variable Defense # unsafe

samplesη = 3 η = 5 η = 10 η = 20
0.3 0.6 1.0 0.3 0.6 1.0 0.3 0.6 1.0 0.3 0.6 1.0

VideoCrafter-(Text-to-Image) 0.99 0.95 0.80 0.98 0.96 0.75 0.99 0.94 0.69 0.98 0.94 0.66 307
VideoCrafter-(Image-to-Image) 1.00 0.99 0.86 1.00 1.00 0.78 1.00 0.98 0.65 0.99 0.97 0.58 180
AnimateDiff-(Text-to-Image) 1.00 0.97 0.89 0.98 0.96 0.85 0.99 0.96 0.81 0.98 0.95 0.74 297

AnimateDiff-(Image-to-Image) 0.99 0.89 0.61 0.97 0.92 0.48 0.99 0.86 0.24 0.98 0.87 0.21 180

that the conditional input cp is converted from a prompt to an
image. The rest of the generation process remains unchanged.
Consequently, to explore the generalization ability of our
method, we aim to use unsafe images to query an image-to-
video diffusion model [3]–[5], [46] and thereby confirm the
versatility of our approach.

It is noteworthy that, during model selection, both Ani-
mateDiff [4] and VideoCrafter [3] are capable of performing
image-to-video generation tasks. However, MagicTime can
only perform text-to-video generation and cannot be used
in this section. To query the model with unsafe images to
generate unsafe videos, we select 200 images they deemed
most unsafe from those generated using unsafe prompts by
Qu et al. [10] from Stable Diffusion [30].

After data cleaning, we compile a dataset of 200 unsafe
images to query the video generation model. This step ensures
that harmless videos do not interfere with our detection
accuracy. We remove 20 poorly generated videos for each
model and those without harmful content. Then, we proceed
to detect harmful content in the remaining videos generated
by the respective models.

In this section, we do not retrain detection models. Instead,
we use detection models trained on unsafe videos generated by
the same model’s text-to-video task. We ensure the pre-trained
parameters are consistent with those used in the text-to-video
generation task. For example, for AnimateDiff [4], we use the
same version of Stable Diffusion v1.5 [30] parameters for the
image-to-video task as for the text-to-video task. Additionally,
the versions and types of the LoRA module and motion
module remain consistent; only the modality of the input data
has changed.

From the results in Table VII, we can see that LVD still
maintains a high detection success rate when detecting unsafe
content generated by different tasks of the same model.
In Table VII, we choose to display only the TPR scores.
This is because the negative samples in the detection tests
are harmless videos generated by the same model’s text-to-
video task. These samples have already shown detection results
in Table II. This section mainly focuses on the detection
performance of unsafe videos generated by the image-to-video
task.

It can be seen that when λ is set to 0.3 and 0.6, both
models achieve around 0.90 TPR across all values of η for

the image-to-video task. This indicates that LVD can achieve
good detection success rates even when the constraints are
slightly loosed. An unsafe video can still be caught by a
sufficient number of detection models during the inference
process. However, as we continue to increase λ, we observe
a significant drop in TPRs for the image-to-video task. This
phenomenon is particularly notable in AnimateDiff [4]. When
η equals 20, the TPR drops to only 0.21. This is much lower
than the 0.74 TPR for detecting unsafe videos generated by
the text-to-video task.

We believe this discrepancy is due to the differences in
generation tasks, misleading some detection models during
the denoising steps. These models incorrectly classify the
videos as harmless, leading to substantially decreased TPRs
when LVD requirements are stricter. However, if we relax the
constraints slightly (set λ to 0.6) when η is high, our defense
mechanism can still achieve over 95% detection success rate
for the image-to-video task. This demonstrates our defense
mechanism’s generalization capability.

C. Interoperability Evaluation

LVD can serve as a plug-in model-read defense mechanism,
allowing for easy integration with other defense strategies to
provide more effective protection. In this subsection, we test
the combination of LVD with the classic model-free method,
Unsafe Diffusion [10], as well as the model-write approach,
Safe Latent Diffusion (SLD) [9].

Integrate with Model-free Methods. We examine the de-
tection performance of LVD combined with Unsafe Diffusion
using different η and λ settings (γ is set to 0.5 for this
part to ensure that the final prediction depends equally on
each method). As shown in Table VIII, combining with LVD
at η = 3 significantly improves overall defensive accuracy
with original Unsafe Diffusion. Results from MagicTime [1]
indicate that the TNR increased from 0.56 to 0.95, and the
accuracy rose from 0.77 to 0.92. We notice that combining
Unsafe Diffusion with LVD effectively addresses the poor
detection of negative cases by Unsafe Diffusion. The detection
results from all models support this point. Additionally, the
combined defense enhances accuracy in certain η settings com-
pared to using LVD alone. For instance, at η = 10, the TNR,
TPR, and accuracy for LVD alone are 0.99, 0.84, and 0.92,
respectively, while the combined defense achieves 0.96, 0.93,

11

TABLE VIII: Testing the combination of Unsafe Diffusion [10] with different η settings LVD on MagicTime [1], AnimateD-
iff [4], and VideoCrafter [3]. The λ values are set to align with the best performance in Table II.

Method MagicTime AnimateDiff VideoCrafter
TNR TPR Accuracy TNR TPR Accuracy TNR TPR Accuracy

Unsafe Diffusion 0.56 0.98 0.77 0.68 0.95 0.82 0.65 0.95 0.80
UD + LVD (η = 3) 0.95 0.90 0.92 0.95 0.88 0.91 0.90 0.78 0.84
UD + LVD (η = 5) 0.91 0.92 0.92 0.97 0.85 0.91 0.73 0.93 0.83

UD + LVD (η = 10) 0.96 0.93 0.94 0.99 0.81 0.90 0.89 0.89 0.89
UD + LVD (η = 20) 0.98 0.98 0.98 0.91 0.93 0.92 0.89 0.92 0.91

and 0.94. The improvement in TPR without affecting TNR
indicates that Unsafe Diffusion and LVD can synergistically
enhance detection accuracy.

Integrate with Model-write Methods. With SLD [9], our
method can replace the calculation of distances between safety
concept embeddings and prompt embeddings during detection.
Additionally, it dynamically adjusts the momentum based on
the detection model’s confidence that the sample is unsafe.

To evaluate the effectiveness of SLD on VGMs and the
performance improvement when combined with LVD, we use
NSFW-200 [45] for testing. Since the primary goal of SLD is
to eliminate unsafe concepts encountered during the generation
process, the objective of our experiment is to evaluate whether
introducing LVD can improve the nudity removal rate [21].
Given that the ultimate goal is to eliminate unsafe concepts
and obtain the generated samples, we set η to align with the
current step in the denoising process and set λ to 0.6.

From the demonstration results,8 we find that combining
LVD with SLD [9] more effectively removes unsafe concepts.
We observe that, with the original SLD configurations, ‘LVD +
SLD (weak)’ effectively removes unsafe concepts in samples
where SLD (medium) fails. The videos generated with ‘LVD
+ SLD’ can identify specific areas that need to be covered
with clothing or other items. Therefore, even when only the
weak SLD configuration is used for defense, it still provides
excellent protection. Using ‘LVD + SLD (medium)’ provides
stronger and more reasonable defenses. For example, as shown
in the fifth row, petals are generated as task objects in videos
while preserving the background similarity to the original
video. More results of ‘LVD + SLD’ on three video generation
models are in Appendix B.

Takeaways: In this section, we further examine our
defense mechanism’s robustness, generalization ability,
and interoperability. Firstly, we use adversarial prompts
to generate videos and tested the detection capability
of our defense mechanism. The results show that ad-
versarial prompts do not reduce detection performance
across the three models, demonstrating the robustness
of our method. Then, we test our defense mechanism
on different generation tasks within the same model.

8Due to content restrictions, we do not show the results in the main paper
but have uploaded them to https://github.com/py85252876/UVD/tree/main/
SLD with LVD

We find that the detection models trained on text-to-
video tasks still effectively detect unsafe content in
image-to-video tasks, maintaining a TPR close to 1.00.
The experimental results show that our model is task-
agnostic and has strong generalization ability. Finally,
we combine LVD with existing model-write and model-
free methods. The results show that our method can
enhance the performance with other methods.

VII. RELATED WORK

A. Existing Defenses for Image Diffusion Models

Model-write Defense. As we mentioned in Section IV,
model-write methods require changing the model parameters
or the generation process. Schramowski et al. [9] first propose
a safety guidance strategy to prevent models from generat-
ing inappropriate content. This method modifies the model’s
classifier-free guidance equation by using several pre-defined
safe concepts to redirect potentially harmful prompts. Sub-
sequently, Gandikota et al. [21] argue that harmful concepts
could be erased from the model’s understanding. By fine-
tuning the whole model, they eliminate the model’s compre-
hension of undesirable content, thus achieving defense.

The problem with model-write defense is that this type of
method needs to change or update the model’s generation pro-
cess or parameters, which might affect the model generation
quality [9], [18], [21], [23]–[26]. To erase or avoid the unsafe
output from the model, they usually need to fine-tune the
model. These methods require substantial time for fine-tuning
generative models in the image domain, and implementing
them on more complex video diffusion models demands even
greater computational resources and time. Furthermore, some
methods are prompt-dependent, focusing primarily on specific
unsafe prompts. However, as Qu et al. [10] discover, using
normal prompts can still generate inappropriate outputs. In
such cases, prompt-dependent methods lose their effectiveness
in providing protection. Besides, the model-write defense is
case-sensitive; the defense methods for different models must
be adjusted according to the varying parameters and settings
of each model.

Model-free Defense. The typical feature of model-free de-
fense is the defense process does not interact with the gen-
eration model [10], [19], [20]. The most intuitive way is to
use a classification model as the detection model, which can
effectively detect the unsafe generation output. Rando et al.

12

https://github.com/py85252876/UVD/tree/main/SLD_with_LVD
https://github.com/py85252876/UVD/tree/main/SLD_with_LVD

show the safety filter in Stable Diffusion [30] determines the
safety of generated images by extracting features with CLIP
and comparing them to 17 unsafe concepts. After that, Qu et
al. [10] use linear probing with a pre-trained CLIP model to
create a detection model. When training with unsafe images,
they only update the parameters of the linear layer while
keeping the pre-trained CLIP model frozen. Because they only
detect the output from the generator and can ignore the internal
mechanism [10], [19], [20], model-free methods have better
generalization than model-write defenses. However, they lack
flexibility and are relatively rigid. For example, if a company
publishes its model and allows users to access it, the model’s
high performance may attract many users simultaneously. With
limited GPU resources and a need to prevent unsafe content
generation, using a model-free defense strategy can block
unsafe outputs. However, these unnecessary generations still
consume GPU resources and waste other users’ time. Since tra-
ditional model-free defenses cannot access the model’s internal
processes, they cannot preemptively stop unsafe generations.
Another approach is to perform input prompt filtering, which is
more time-efficient than other methods. However, this method
is vulnerable to adversarial prompts and jailbreak attacks
(described briefly in Section VII-B).

B. Jailbreak Attacks on Generative Models

As discussed in Section VII-A, numerous safety filters have
been proposed to prevent the misuse of generative model
capabilities and ensure the security of generated content. The
unsafe generation issue is not limited to image [30], [47] and
video generators [1], [3], [4] but extends to large language [48]
and audio [49] models. Various jailbreak techniques have been
investigated to evaluate safety filters’ robustness.

For example, in the text domain (aka, in large language
models), Liu et al. [50] analyze different types of jailbreak
prompts, including pretending, attention shifting, and privilege
escalation. In the context of text-to-image models, researchers
have found that built-in safety filters can be bypassed using
adversarial prompts. As discussed in our paper, Rando et
al. [20] initially bypass filters by manually adding extraneous,
irrelevant information to prompts. Qu et al. [10] identify
that normal prompts could query the model to generate un-
safe images and manually collect these prompts to create a
structured jailbreak prompt dataset. Believing the previous
methods are inefficient, Yang et al. [45] employ various search
strategies and reinforcement learning techniques to develop
a highly effective adversarial prompt-building technique and
collect a dataset. These jailbreak attacks on generators reveal
that models still have security vulnerabilities, necessitating the
exploration of more effective defense mechanisms.

VIII. CONCLUSION AND DISCUSSION

Limitations. In addition to the potential biases in the dataset
discussed in Section III-C, there may also be incomplete
coverage of unsafe categories. Although we have made every
effort to search for appropriate benchmark prompts, the actual
number of unsafe categories could exceed five in reality. Due

to the limited number of prompts, we have only identified a
portion of these categories. As a result, our defense mechanism
may fail to detect new types of unsafe videos, though it could
be extended to incorporate them.

Secondly, although our defense mechanism has achieved
nearly perfect detection accuracy, one major issue is the
high cost of training the model. Even when η is smaller,
our model can still accurately identify most diffusion model
generation tasks, achieving over 0.90 in TPR, TNR, and
accuracy. However, more complex models in the future may
require larger η values for better detection. This, in turn, will
significantly increase the number of detection models needed.
For instance, when η equals 30, at least 30×n detection models
must be trained for n unsafe categories.

Potential Extensions. We have shown that our defense mech-
anism uses intermediate outputs from the denoising steps of
diffusion models to train a detection model and does not
require any special input. Therefore, it can form a general
and robust defense mechanism. This approach can be applied
to various types of diffusion models, including text-to-image
models [30]. Additionally, our method can be combined with
other defense strategies to protect the generation process. For
example, when we set η to the total number of denoising steps,
our method can work alongside external safety filters [10],
[20]. When η is less than the number of denoising steps, it
can collaborate with internal defense methods [9], [18], [21]
to ensure that unsafe concepts are successfully removed from
the generated outputs.

Conclusion. Our work first discusses the ability of next-
generation VGMs to produce unsafe content and the potential
threats they pose. We find that, with specific prompts input,
VGMs can create various high-resolution unsafe videos. We
think this violates the White House executive order, and
the research community needs to address this problem. To
thoroughly understand the models’ capability, we collect un-
safe prompt data from 4chan and Lexica. After cleaning and
filtering the data, we obtain an initial dataset of 2112 prompts
capable of guiding VGMs to produce unsafe videos.

We then use data-driven methods, including k-means and
thematic coding analysis, to identify unsafe categories for the
generated videos. Participants are recruited to label the videos
based on these categories. From the initial 2112 generated
unsafe videos, participants identify 937 that are universally
recognized as unsafe and classify each one. Using the annota-
tions and corresponding prompts, we construct the first unsafe
video dataset specifically for VGMs.

Based on this dataset, we design the Latent Variable Defense
(LVD), the first defense method to prevent unsafe generation
processes in VGMs. Our experiment results indicate that LVD
provides reliable defense across three types of VGMs included
in our experiments, achieving 0.99, 0.92, and 0.91 detection
accuracy. Furthermore, it maintains 95% effectiveness when
tested against adversarial prompts and different generation
tasks within the same model.

13

ACKNOWLEDGMENT

We thank the reviewers for their valuable comments
and suggestions. This work is supported by NSF 1931441,
2340788, and 2217071.

REFERENCES

[1] S. Yuan, J. Huang, Y. Shi, Y. Xu, R. Zhu, B. Lin, X. Cheng, L. Yuan,
and J. Luo, “Magictime: Time-lapse video generation models as meta-
morphic simulators,” arXiv preprint arXiv:2404.05014, 2024.

[2] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian,
D. Lorenz, Y. Levi, Z. English, V. Voleti, A. Letts et al., “Stable video
diffusion: Scaling latent video diffusion models to large datasets,” arXiv
preprint arXiv:2311.15127, 2023.

[3] H. Chen, Y. Zhang, X. Cun, M. Xia, X. Wang, C. Weng, and Y. Shan,
“Videocrafter2: Overcoming data limitations for high-quality video
diffusion models,” arXiv preprint arXiv:2401.09047, 2024.

[4] Y. Guo, C. Yang, A. Rao, Y. Wang, Y. Qiao, D. Lin, and B. Dai,
“Animatediff: Animate your personalized text-to-image diffusion models
without specific tuning,” arXiv preprint arXiv:2307.04725, 2023.

[5] S. Zhang, J. Wang, Y. Zhang, K. Zhao, H. Yuan, Z. Qin, X. Wang,
D. Zhao, and J. Zhou, “I2vgen-xl: High-quality image-to-video synthesis
via cascaded diffusion models,” arXiv preprint arXiv:2311.04145, 2023.

[6] D. J. Zhang, J. Z. Wu, J.-W. Liu, R. Zhao, L. Ran, Y. Gu, D. Gao, and
M. Z. Shou, “Show-1: Marrying pixel and latent diffusion models for
text-to-video generation,” arXiv preprint arXiv:2309.15818, 2023.

[7] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P.
Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video:
High definition video generation with diffusion models,” arXiv preprint
arXiv:2210.02303, 2022.

[8] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet,
“Video diffusion models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 8633–8646, 2022.

[9] P. Schramowski, M. Brack, B. Deiseroth, and K. Kersting, “Safe latent
diffusion: Mitigating inappropriate degeneration in diffusion models,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 22 522–22 531.

[10] Y. Qu, X. Shen, X. He, M. Backes, S. Zannettou, and Y. Zhang,
“Unsafe diffusion: On the generation of unsafe images and hateful
memes from text-to-image models,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 3403–3417.

[11] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[12] D. Güera and E. J. Delp, “Deepfake video detection using recurrent
neural networks,” in 2018 15th IEEE international conference on
advanced video and signal based surveillance (AVSS). IEEE, 2018,
pp. 1–6.

[13] D. Wodajo, S. Atnafu, and Z. Akhtar, “Deepfake video detection using
generative convolutional vision transformer,” 2023.

[14] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. Jain, “On the detection
of digital face manipulation,” 2020.

[15] A. Gandhi and S. Jain, “Adversarial perturbations fool deepfake detec-
tors,” 2020.

[16] Y. He, B. Gan, S. Chen, Y. Zhou, G. Yin, L. Song, L. Sheng, J. Shao, and
Z. Liu, “Forgerynet: A versatile benchmark for comprehensive forgery
analysis,” 2021.

[17] R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and Y. Liu,
“Fakespotter: A simple yet robust baseline for spotting ai-synthesized
fake faces,” 2020.

[18] X. Li, Y. Yang, J. Deng, C. Yan, Y. Chen, X. Ji, and W. Xu, “Safegen:
Mitigating unsafe content generation in text-to-image models,” arXiv
preprint arXiv:2404.06666, 2024.

[19] M. Li, “Nsfw text classifier on hugging face,” 2022.
[20] J. Rando, D. Paleka, D. Lindner, L. Heim, and F. Tramèr, “Red-teaming

the stable diffusion safety filter,” arXiv preprint arXiv:2210.04610, 2022.
[21] R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau, “Erasing

concepts from diffusion models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 2426–2436.

[22] M. Brack, F. Friedrich, D. Hintersdorf, L. Struppek, P. Schramowski,
and K. Kersting, “Sega: Instructing text-to-image models using semantic
guidance,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[23] N. Kumari, B. Zhang, S.-Y. Wang, E. Shechtman, R. Zhang, and
J.-Y. Zhu, “Ablating concepts in text-to-image diffusion models,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 22 691–22 702.

[24] S. Kim, S. Jung, B. Kim, M. Choi, J. Shin, and J. Lee, “Towards safe
self-distillation of internet-scale text-to-image diffusion models,” arXiv
preprint arXiv:2307.05977, 2023.

[25] M. Lyu, Y. Yang, H. Hong, H. Chen, X. Jin, Y. He, H. Xue, J. Han, and
G. Ding, “One-dimensional adapter to rule them all: Concepts diffusion
models and erasing applications,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
7559–7568.

[26] R. Gandikota, H. Orgad, Y. Belinkov, J. Materzyńska, and D. Bau,
“Unified concept editing in diffusion models,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2024, pp. 5111–5120.

[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[29] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilis-
tic models,” in International conference on machine learning. PMLR,
2021, pp. 8162–8171.

[30] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” 2022.

[31] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans
et al., “Photorealistic text-to-image diffusion models with deep language
understanding,” Advances in neural information processing systems,
vol. 35, pp. 36 479–36 494, 2022.

[32] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang,
and M. D. Plumbley, “Audioldm: Text-to-audio generation with latent
diffusion models,” arXiv preprint arXiv:2301.12503, 2023.

[33] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv preprint arXiv:2010.02502, 2020.

[34] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-
generated images are surprisingly easy to spot... for now,” 2020.

[35] X. Zhang, S. Karaman, and S.-F. Chang, “Detecting and simulating
artifacts in gan fake images,” 2019.

[36] M. Zhu, H. Chen, Q. Yan, X. Huang, G. Lin, W. Li, Z. Tu, H. Hu, J. Hu,
and Y. Wang, “Genimage: A million-scale benchmark for detecting ai-
generated image,” 2023.

[37] D. Cozzolino, K. Nagano, L. Thomaz, A. Majumdar, and L. Verdoliva,
“Synthetic image detection: Highlights from the ieee video and image
processing cup 2022 student competition,” 2023.

[38] T. Zhang, “Deepfake generation and detection, a survey,” Multimedia
Tools and Applications, vol. 81, no. 5, pp. 6259–6276, 2022.

[39] K. P. Sinaga and M.-S. Yang, “Unsupervised k-means clustering algo-
rithm,” IEEE access, vol. 8, pp. 80 716–80 727, 2020.

[40] M. Syakur, B. K. Khotimah, E. Rochman, and B. D. Satoto, “Integration
k-means clustering method and elbow method for identification of
the best customer profile cluster,” in IOP conference series: materials
science and engineering, vol. 336. IOP Publishing, 2018, p. 012017.

[41] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication methods and mea-
sures, vol. 1, no. 1, pp. 77–89, 2007.

[42] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[43] W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4195–4205.

[44] C. Han, A. Li, D. Kumar, and Z. Durumeric, “Characterizing the
mrdeepfakes sexual deepfake marketplace,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.11100

[45] Y. Yang, B. Hui, H. Yuan, N. Gong, and Y. Cao, “Sneakyprompt:
Evaluating robustness of text-to-image generative models’ safety filters,”
arXiv preprint arXiv:2305.12082, 2023.

[46] X. Chen, Y. Wang, L. Zhang, S. Zhuang, X. Ma, J. Yu, Y. Wang,
D. Lin, Y. Qiao, and Z. Liu, “Seine: Short-to-long video diffusion model
for generative transition and prediction,” in The Twelfth International
Conference on Learning Representations, 2023.

14

https://arxiv.org/abs/2410.11100

[47] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.

[48] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[49] S. Kim, H. Kim, and S. Yoon, “Guided-tts 2: A diffusion model for high-
quality adaptive text-to-speech with untranscribed data,” arXiv preprint
arXiv:2205.15370, 2022.

[50] Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao, T. Zhang,
K. Wang, and Y. Liu, “Jailbreaking chatgpt via prompt engineering: An
empirical study,” arXiv preprint arXiv:2305.13860, 2023.

[51] Z. Tong, Y. Song, J. Wang, and L. Wang, “Videomae: Masked autoen-
coders are data-efficient learners for self-supervised video pre-training,”
Advances in neural information processing systems, vol. 35, pp. 10 078–
10 093, 2022.

[52] Y. Zhang, Y. Wei, D. Jiang, X. Zhang, W. Zuo, and Q. Tian, “Con-
trolvideo: Training-free controllable text-to-video generation,” arXiv
preprint arXiv:2305.13077, 2023.

[53] C. Qi, X. Cun, Y. Zhang, C. Lei, X. Wang, Y. Shan, and Q. Chen,
“Fatezero: Fusing attentions for zero-shot text-based video editing,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 15 932–15 942.

[54] F. Shi, J. Gu, H. Xu, S. Xu, W. Zhang, and L. Wang, “Bivdiff: A training-
free framework for general-purpose video synthesis via bridging image
and video diffusion models,” arXiv preprint arXiv:2312.02813, 2023.

[55] H. Qiu, M. Xia, Y. Zhang, Y. He, X. Wang, Y. Shan, and Z. Liu,
“Freenoise: Tuning-free longer video diffusion via noise rescheduling,”
arXiv preprint arXiv:2310.15169, 2023.

[56] R. Yang, P. Srivastava, and S. Mandt, “Diffusion probabilistic modeling
for video generation,” Entropy, vol. 25, no. 10, p. 1469, 2023.

[57] Y. Pang, Y. Zhang, and T. Wang, “Vgmshield: Mitigating misuse of
video generative models,” arXiv preprint arXiv:2402.13126, 2024.

[58] Y. Liu, Z. Li, M. Backes, Y. Shen, and Y. Zhang, “Watermarking
diffusion model,” arXiv preprint arXiv:2305.12502, 2023.

[59] S. Shan, J. Cryan, E. Wenger, H. Zheng, R. Hanocka, and B. Y.
Zhao, “Glaze: Protecting artists from style mimicry by {Text-to-Image}
models,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 2187–2204.

[60] Z. Sha, Z. Li, N. Yu, and Y. Zhang, “De-fake: Detection and attribution
of fake images generated by text-to-image generation models,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 3418–3432.

APPENDIX A
MORE DETAILS ON THE EXPERIMENTAL PREPARATION

We employ VideoMAE [51] as the backbone for our de-
tection model. Theoretically, our detection task is a classifica-
tion work; we connect trainable, fully connected layers with
VideoMAE. In our experiments, each VGM is configured with
50 inference steps, and we train 50 distinct detection models
for each category of unsafe videos. All detection models are
trained for 10 epochs, with the training process for each taking
less than 10 minutes. The rest of the training setup is provided
in Table IX.

APPENDIX B
MORE DETAILS FOR INTEROPERABILITY EVALUATION

We filter the generated samples and calculate the proportion
of unsafe samples for each model using different defense
methods. Figure 4 clearly shows that combining LVD with
SLD (medium) or SLD (weak) significantly improves defense
performance compared to using SLD (medium) or SLD (weak)
alone. This demonstrates that LVD can be integrated with other
defense methods for stronger protection.

TABLE IX: The default parameters used in our experiments.
Size of evaluation set is 307 for VideoCrafter, 203 for Mag-
icTime, and 297 for AnimateDiff.

Parameters Experiment setting for our work
Epoch number 10

Resolution 512× 512
Batch size 4

Loss function Cross Entropy
Optimizer AdamW

Learning rate 5× 10−5

Gradient accumulation steps 4
Train-Test split 80 : 20
Denoising step 50

MagicTime AnimateDiff VideoCrafter0%

10%

20%

30%

40%

50%

60%

Pr
op

or
tio

n
of

 U
ns

af
e

Vi
de

os
 (%

)
SLD (weak) SLD (medium) LVDM + SLD (weak) LVDM + SLD (medium)

Fig. 4: The ratio of unsafe samples after employing different
defense strategies against NSFW-200 dataset.

APPENDIX C
MORE TRAINING TECHNIQUES FOR VGMS

Training-free Methods. Training-free methods can be seen
as the most straightforward way to get a video diffusion
model [52]–[55]. Because of the lack of temporal understand-
ing, these models usually need some information to guide
the generation process, such as depth maps, edges, etc. After
synthesizing the frames under guidance, these models use the
generated frames to get the DDIM inversion and feed it to a
video diffusion model to achieve temporal coherence.

Training from Scratch. This type of video diffusion model
mainly changes the architecture of the image diffusion
model [8], [56]. For example, VDM [8] proposes to extend
the image diffusion model to the video domain by using 3D
U-Net (the third dimension models temporal relations among
images). They decide to replace each 2D convolution with a
space-only 3D convolution and insert the temporal attention
block to perform attention over different frames.

APPENDIX D
MORE DETAILS FOR DEEPFAKE DETECTION IN VGMS

Diffusion models are now used across various fields for
data generation due to their high-quality and diverse content
generation capabilities. However, this powerful ability can also
be misused, raising significant concerns. With the development
of VGMs [2], [4]–[6], [46], concerns have arisen not only

15

0 5 10 15 20 25 30 35 40 45 50

0.50

0.75

1.00

TN
R

MagicTime

0 5 10 15 20 25 30 35 40 45 50

AnimateDiff

0 5 10 15 20 25 30 35 40 45 50

VideoCrafter

0 5 10 15 20 25 30 35 40 45 50

0.50

0.75

1.00

TP
R

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0.50

0.75

1.00

Ac
cu

ra
cy

0 5 10 15 20 25 30 35 40 45 50

= 0.3 = 0.6 = 1.0

0 5 10 15 20 25 30 35 40 45 50

Fig. 5: Observe the trends in TPR, TNR, and accuracy of LVD on MagicTime, AnimateDiff, and VideoCrafter as η increases
under different λ settings. For small η, we set λ to 1. As η increases, a smaller λ (e.g., λ = 0.3) gets better detection results.

about their potential to generate not-safe-for-work (NSFW)
content but also about the broader implications of generating
unauthorized content. To protect users’ copyrights and prevent
them from being misled by fake videos, Pang et al. propose
VGMShield [57]. Their method involves three roles in the
depicted scenarios: creator, modifier, and consumer. To protect
the consumer, they introduced a fake video detection method
and conducted experiments in four different scenarios. Addi-
tionally, consumers can use a fake video source tracing model
to identify the video generator responsible for creating the
fake video. In response to the White House executive order
and NIST documents, the fake video source tracing model can
help regulatory agencies maintain community safety. Finally,
for creators, they proposed a misuse prevention method by
adding invisible perturbations to protected images to prevent
the video generation process.

This issue has also been observed in text-to-image mod-
els [30], [47]. When malicious users exploit diffusion models
to generate fake facial images and manipulated videos, it is
called a deepfake attack. Although not explicitly harmful, it
poses substantial potential risks. Various methods, such as wa-
termarks [58], adversarial examples [59], and detection [60],
have been proposed to address these issues. However, there
is currently no solution for preventing and controlling the
generation of harmful video content.

APPENDIX E
MORE DETAILS FOR η AND λ EVALUATION

In this part, we how the impact of different λ values as
η changes for defending against unsafe videos generated by
three models in Figure 5.

The results observed from VideoCrafter and AnimateDiff
align with our hypothesis: when η is small, a higher λ

TABLE X: Compared the optimal accuracy of our defense
mechanism for VideoCrafter [3] under different η values with
existing model-free works [10].

Evaluation
Metrics

Latent Variable Defense Unsafe
Diffusion [10]η = 3 η = 5 η = 10 η = 20

TNR 0.87 0.93 0.71 0.87 0.65
TPR 0.80 0.75 0.94 0.94 0.95

Accuracy 0.84 0.84 0.83 0.91 0.80

provides better defense. However, as η increases, accuracy
and TPR significantly decline. Additionally, setting λ too low
can lower LVD’s threshold for classifying a sample as unsafe,
leading to many harmless samples being misclassified. When
λ is set to 0.3, even with η reaching 40, the TNR score
only approaches 0.9. The AUC ROC curves for these η and
λ configurations are shown in Figure 6. This result aligns
with intuitive expectations, as larger η values improve LVD’s
accuracy due to the increased number of denoising steps.

APPENDIX F
MORE DETAILS FOR COMPARISON WITH EXISTING WORKS

In Section V-E, we compared the detection performance
using unsafe videos generated by the MagicTime model. Here,
we show the differences in detection performance on the
remaining two models.

According to results from Table XI, and Table X, it
also shows that while existing methods for detecting outputs
achieve good TPR scores, they still have chances of misclas-
sifying harmless samples.

16

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

LVD (= 1, = 1):AUC=0.80
LVD (= 3, = 1):AUC=0.91
LVD (= 5, = 1):AUC=0.94
LVD (= 10, = 1):AUC=0.95
LVD (= 20, = 0.6):AUC=1.00

MagicTime

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LVD (= 1, = 1):AUC=0.85
LVD (= 3, = 1):AUC=0.94
LVD (= 5, = 1):AUC=0.96
LVD (= 10, = 1):AUC=0.97
LVD (= 20, = 0.6):AUC=0.98

AnimateDiff

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LVD (= 1, = 1):AUC=0.72
LVD (= 3, = 1):AUC=0.88
LVD (= 5, = 1):AUC=0.91
LVD (= 10, = 0.6):AUC=0.92
LVD (= 20, = 0.6):AUC=0.97

VideoCrafter

Fig. 6: AUC ROC scores for MagicTime [1], AnimateDiff [4], and VideoCrafter [3]. The parameters η and λ were selected
based on the highlighted configurations in Table II (i.e., η = 5 and λ = 1 for MagicTime [1], η = 10 and λ = 1 for
AnimateDiff [4], and η = 20 and λ = 0.6 for VideoCrafter [3]). Note: The AUC ROC presented here is derived from the
assessment of the entire LVD. Therefore, when the η value is small, the LVD’s output (pred_value) tends to be quite
monotonic (e.g., when η = 1, pred_value = {0, 1}). As a result, the calculation yields fewer usable thresholds, causing
the ROC curve to appear more like a step function. Increasing the η value includes more usable thresholds, which smoothens
the ROC curve.

0 5 10 15 20 25 30 35 40 45
0.80

0.90

1.00

Ac
cu

ra
cy

MagicTime

0 5 10 15 20 25 30 35 40 45

AnimateDiff

0 5 10 15 20 25 30 35 40 45

VideoCrafter

Pornographic Violent Weird Terrifying Political

Fig. 7: Detection results for Distorted/Weird, Terrifying, Pornographic, Violent/Bloody, and Political videos.

TABLE XI: Compared the optimal accuracy of our defense
mechanism for AnimateDiff [4] under different η values with
existing model-free works [10].

Evaluation
Metrics

Latent Variable Defense Unsafe
Diffusion [10]η = 3 η = 5 η = 10 η = 20

TNR 0.93 0.97 0.99 0.88 0.68
TPR 0.89 0.85 0.81 0.95 0.95

Accuracy 0.91 0.91 0.90 0.92 0.82

APPENDIX G
MORE DETAILS FOR INFERENCE STEPS

We present the results of our defense mechanism for
VideoCrafter [3] and AnimateDiff [4] at each denoising step
in Figure 7. The detection model can identify almost every
unsafe category. However, for Political unsafe videos, the
detection results fluctuate across different denoising steps. We
think single-step detection is not enough.

Additionally, we aim to further explore the reasons behind
the detection differences of our mechanism across various
VGMs. We extract several samples to observe their recon-
struction effects at different denoising steps. In Figure 8, we
select one sample from each model and display the denoising
effects at intervals of five steps.

APPENDIX H
MORE DETAILS FOR POTENTIAL BIAS IN DATASET

Data Collection. In this section, we want to discuss potential
biases that might be present in our dataset. We source our
malicious prompts from the 4chan and Lexica websites, fol-
lowing previous work [9], [10], [18]–[20], [24], [25]. Due to
limited data sources in this emerging field, our dataset may
not be comprehensive or inclusive of all perspectives. For ex-
ample, content considered unsafe by individuals from certain
countries or religious backgrounds may not be represented.

Data Annotation. We follow the IRB protocol requiring
participants to be from the United States and over 18 years
old, which may bias the dataset toward the U.S. population.
However, we include diversity in race, age, and gender: par-
ticipants are primarily aged 26–35 (163), followed by 36–45
(109) and 19–25 (65); gender includes 252 females, 235 males,
and 2 undisclosed; ethnicity includes White (314), Black (77),
Latino (40), Asian (39), and Other (19).

APPENDIX I
MORE DETAILS FOR DATA COLLECTION

We apply k-means to 2112 videos and get 23 video clusters.
For each cluster, we select the 10 videos closest to the center
for thematic coding analysis. We represent the code book after
our discussion in Table XII. For each category, we provide a
text description and the corresponding video clusters.

17

MagicTime

t=5 t=10 t=15 t=20 t=25 t=30 t=35 t=40 t=45 t=50

AnimateDiff

VideoCrafter

Fig. 8: For the three VGMs in our experiments, we randomly select one sample and display its reconstructed denoised state
at intervals of every five denoising steps, starting from the 5-th step.

TABLE XII: Represent text descriptions for unsafe clusters obtained from the k-means analysis and performed thematic coding.
We design five unsafe categories and display each category along with the clusters it includes and the number of videos in
each cluster.

Theme Cluster Description # of videos # of clusters

Theme 1: Distorted/Weird Videos featuring distorted and bizarre content that can cause
discomfort, such as twisted faces and figures. 41 6

3 People with a broken and strange face, blood on their faces. 8

5
Males of different ages and races with facial expressions of
pain or frustration 8

6 The facial features of the people are distorted. 6
11 A disheartened woman in the scene. 5
12 Distorted and bizarre objects(e.g., cornoavirus) and people. 8
14 Group of absurd and bizarre videos. 6

Theme 2: Terrifying Contains frightening content, including bizarre expressions,
monsters, and terrifying objects. 37 5

3 People with a broken and strange face, blood on their faces. 8
18 Creepy human objects, with skulls and blood and bones. 10
20 Exposed, weird anime female object. 3
22 Exposed human with bloody, sad, angry woman faces. 7
23 Videos are blending monsters and humans, resembling Shrek. 9

Theme 3: Pornographic Videos containing mostly exposed bodies, sexual activities,
or genital and private body parts. 19 3

4 A naked man is sleeping. 10
7 A naked woman is in the scene. 5
20 Exposed, weird anime female object. 4

Theme 4: Violent/Bloody
Scenes depicting conflicts between characters, including
the display of weapons, wounds on bodies, and disturbing
blood.

28 4

3 People with a broken and strange face, blood on their faces. 4
9 Armed soldiers in a horrible battlefield 8
18 Creepy human objects, with skulls and blood and bones. 9
22 Exposed human with bloody, sad, angry woman faces. 7

Theme 5: Political Includes politically related content, such as representations of
Trump or Biden. 14 2

2 Trump is talking in the scene. 10

21
Description of people and objects similar to Hitler, and politics
related 4

18

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

Our work proposed a defense method against unsafe gen-
eration from the video generation model. The primary com-
ponents of our work are 1) A dataset that contains malicious
prompts, 2) A video generation model that is used to generate
unsafe videos, 3) a dataset of videos synthesized from the
video generation model, and 4) detection models for the
different unsafe categories.

1) How to access: Users can access our code repository for
the experiment code at9. In this repository, we also provide the
bash commands to run our code. We provided the malicious
prompt dataset, unsafe video dataset, and our detection model
in the artifact package. Users can use the malicious prompt
to query the video generation model or simply use the video
from the unsafe video dataset. With the unsafe video, users can
utilize our detection model to get detection accuracy at each
denoising step. Finally, users can use the results at different
steps using our latent variable defense method to replicate the
experiment’s results. The pre-prepared data and checkpoints
can be found at Google Drive10 and Zenodo11 the DOI is
10.5281/zenodo.14257724.

2) Hardware dependencies:

• GPU: NVIDIA GTX A6000 or higher.
• RAM: 252 GB minimum.
• CPU: AMD Ryzen Threadripper PRO 5955WX 16-Cores

or equivalent.

3) Software dependencies:

• Anaconda: Anaconda3-2023.03
• Python: Python 3.10.13
• Pytorch: Pytorch 2.1.0
• Packages: The package dependencies are specified in
requirements.txt at the code repository.

4) Benchmarks: None.

B. Artifact Installation & Configuration

All required datasets and detection models are included
in the artifact package. Users can choose to use our unsafe
video dataset directly or query the video generation model by
utilizing a malicious prompt dataset. For adversarial prompt
testing, we also provided the adversarial prompt dataset in the
artifact package. Users can modify the η and λ in the detection
experiments.

Our work tests several factors that could affect the detection
accuracy. In each experiment, the detection model training
configuration follows the Table XIII.

9https://github.com/py85252876/UVD
10https://drive.google.com/drive/folders/1qtMy31zry6phnuZs3EhSQ4sM

kAx-2hi6?usp=sharing
11https://zenodo.org/records/14248971

TABLE XIII: The default parameters used in our experiments.

Parameters Experiment setting for our work
Epoch number 10

Resolution 512× 512
Batch size 4

Loss function Cross Entropy
Optimizer AdamW

Learning rate 5× 10−5

Gradient accumulation steps 4
Train-Test split 80 : 20
Denoising step 50

C. Experiment Workflow

Our work workflow contains five parts.
1) Collected unsafe prompt: The first step of our work is

to collect malicious prompts.
2) Generated unsafe video: We used the collected mali-

cious prompts to query the video generation model and
synthesize unsafe videos.

3) Labeled the unsafe videos: We recruited participants
from Prolific to label the unsafe videos.

4) Trained the detection model: We trained the detection
model for each unsafe category based on the labels
provided by the participants.

5) Detected video at each denoising step: At each de-
noising step, we used intermediate outputs to train the
detection model.

6) Used LVD discriminate unsafe samples: Based on the
detection results at each denoising step, we used LVD
to make the final detection decision and calculate the
detection accuracy.

D. Major Claims

• (C1): We design a plug-in model-read defense mechanism
that does not need to fine-tune the whole generation
model. Based on the different λ and η settings, we test
our LVD in different scenarios.

• (C2): We also consider several factors that could reflect
our detection accuracy. These are detecting accuracy
at different steps (E1), using different η and λ (E2),
comparing with existing methods (E3), evaluating on
adversarial prompts (E4), and evaluating image-to-video
models (E5).

E. Evaluation

Several preliminary steps are required to evaluate our work,
including collecting the malicious prompt datasets, synthesiz-
ing the unsafe videos, and labeling them. Then, use the labeled
unsafe video to train the detection model at each denoising
step for every unsafe category.

1) Detection Accuracy at Different Steps: E1 [E1] [14
hours of synthesizing and 2 hours training]: This part of the
experiment focuses on achieving detection accuracy at differ-
ent denoising steps. The experimental results in this section
demonstrate that single-step detection is insufficient, and we

19

10.5281/zenodo.14257724
https://github.com/py85252876/UVD
https://drive.google.com/drive/folders/1qtMy31zry6phnuZs3EhSQ4sMkAx-2hi6?usp=sharing
https://drive.google.com/drive/folders/1qtMy31zry6phnuZs3EhSQ4sMkAx-2hi6?usp=sharing
https://zenodo.org/records/14248971

aim to use these results to obtain/determine the preliminary
range of η.

[Preparation] The simplest way to reproduce this experi-
ment is by using E1.ipynb, which we have shared on both
Google Drive and Zenodo. To use this notebook, first load the
data into the user’s Google Drive, then follow the notebook’s
instructions to configure the environment and run the code
blocks.

[Execution] After loading the required runtime environment,
the code block executes mae.py and sets --no-train to
enter evaluation mode. Users can select which group to test by
controlling the --group_num parameter, and --step_num
can be used to select the results for a specific step.

[Results] The experimental results should align with those
in Appendix G, Figure 7. This figure has been used to
determine the range of η for LVD.

2) Impact of Different η and λ: E2 [E2] [14 hours of syn-
thesizing and 2 hours training]: In this part of the experiment,
we focus on demonstrating how η and λ affect LVD’s detection
accuracy. We set the values of η to 1, 3, 5, 10, and 20. For λ,
we used three different values: 0.3, 0.6, and 1.0.

[Preparation] Similar to E1, users can reproduce this part of
the experiments using notebook E2-E5.ipynb. The data and
checkpoints need to be loaded into the user’s Google Drive (if
these were already loaded during E1, there is no need to reload
them). Then, run the code blocks to configure the required
packages for the experiments.

[Execution] Before using test_accuracy.py to
calculate the detection accuracy, users need to use
embed_model.py to generate detection results for
the evaluation set at various steps. These detection results
will be saved in a .pth file. Finally, test_accuracy.py
is used to load the detection results and test LVD’s defense
performance using the previously defined five η values and
three λ values.

[Results] The observed experimental results should align
with those in Section V-C, Table II. In that section, when the
value of η is small, a larger λ yields better detection accuracy.
As η increases, lowering the value of λ appropriately leads to
the best classifier results.

3) Comparison with Existing Methods: E3 [E3] [14 hours
of synthesizing and 2 hours training]: We designed LVD
based on detecting samples using the intermediate outputs
at different steps during the generation process. Compared
to other model-free defense methods, LVD captures more
sample information, which we believe leads to better detection
performance. In this section, we compare the performance of
LVD with existing methods using three evaluation metrics:
accuracy, TPR, and TNR.

[Preparation] Similar to E1 and E2, users need to load
the required experimental environment and data. If these have
already been loaded, users can proceed directly to running the
E3 code blocks in E2-E5.ipynb.

[Execution] We reuse the detection results from E2, using
the optimal λ values for each η. The test_accuracy.py
script is used to compute the accuracy, TPR, and TNR for

each η. In the experiment, we compare our method with
unsafe diffusion [35]. To run the test_accuracy.py script
for testing only the final output, simply add the parameter
--unsafe-diffusion.

[Results] The experimental results should correspond
with Table III in Section V-E. We observed that LVD signifi-
cantly outperforms unsafe diffusion in both TNR and accuracy.

4) Evaluation on Adversarial Prompts: E4 [E4] [14 hours
of synthesizing and 2 hours training]: According to [35, 53],
the adversarial prompt can avoid the detection of defense
methods and is still able to generate unsafe content.

[Preparation] Aligned with the experimental settings in
[53], we applied their reinforcement learning-based methods
to the NSFW-200 dataset to generate an adversarial prompt
dataset. We then used this dataset to query the video generation
model, producing unsafe videos. These adversarial videos have
been saved to Adversarial_E4 directory at Google Drive
and Zenodo. Users can still use E2-E5.ipynb to reproduce
this experiment.

[Execution] Similar to E2, users need to first execute
embed_model.py to extract detection results at each de-
noising step. Subsequently, test_accuracy.py is exe-
cuted to evaluate various values of η and λ, which control
the degree of confidence LVD assigns to single-step detection
results.

[Results] The results of the experiment should demonstrate
that LVD can still achieve high detection accuracy against the
adversarial prompt dataset.

5) Evaluation on Image-to-Video Models: E5 [E5] [14
hours of synthesizing and 2 hours training]: Since our defense
method detects unsafe samples during the inference phase,
we believe that LVD should not be limited to text-to-video
generation tasks but should also be applicable to image-to-
video generation tasks.

[Preparation] We first selected 200 images that explicitly
contain unsafe content from the unsafe image dataset gen-
erated in [10]. These 200 images were then used to query
the generation models to produce unsafe videos. These unsafe
videos are saved to Unsafe_E5 directory at Google Drive
and Zenodo. Users can use E2-E5.ipynb

[Execution] Consistent with the previous experiments,
we used embed_model.py to collect detection results at
different denoising steps for the generated unsafe videos.
Then, test_accuracy.py was used to apply LVD and
determine whether the videos were unsafe.

[Results] The experimental results should correspond
with Table VII, demonstrating that LVD still achieves good
detection performance for image-to-video generative tasks.

F. Notes

Our future work will involve comparing our defense method
with more existing methods and testing it on adversarial
prompt datasets generated under a wider range of settings.
These will not affect the final conclusions drawn from the
above experiments.

20

	Introduction
	Background
	Diffusion Models
	Video Diffusion Models
	Deepfake Techniques
	Threat Model

	Generate Unsafe Videos
	Unsafe Prompt Collection
	Theme Summary
	Data Collection

	Defense Methodology
	Overview of Our Method
	Latent Variable Defense
	Interoperability with Existing Defenses
	Discussion

	Evaluation
	Experiment Setup
	Impact of Inference Steps
	Impact of and
	Impact of Different Unsafe Categories
	Comparison with Existing Methods
	Case Study Against Deepfake Generation

	Ablation Study
	Evaluation with Adversarial Prompts
	Evaluation with Image-to-Video Models
	Interoperability Evaluation

	Related Work
	Existing Defenses for Image Diffusion Models
	Jailbreak Attacks on Generative Models

	Conclusion and Discussion
	References
	Appendix A: More Details on the Experimental Preparation
	Appendix B: More Details for Interoperability Evaluation
	Appendix C: More Training Techniques for VGMs
	Appendix D: More Details for Deepfake Detection in VGMs
	Appendix E: More Details for and Evaluation
	Appendix F: More Details for Comparison with Existing Works
	Appendix G: More Details for Inference Steps
	Appendix H: More Details for Potential Bias in Dataset
	Appendix I: More Details for Data Collection
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Detection Accuracy at Different Steps
	Impact of Different and
	Comparison with Existing Methods
	Evaluation on Adversarial Prompts
	Evaluation on Image-to-Video Models

	Notes

